Controllability of the discrete-spectrum Schrodinger equation driven by an external field

被引:103
|
作者
Chambrion, Thomas [1 ]
Mason, Paolo [1 ,2 ]
Sigalotti, Mario [1 ]
Boscain, Ugo [3 ]
机构
[1] Nancy Univ, CNRS, INRIA, Inst Elie Cartan,UMR 7502, F-54506 Vandoeuvre Les Nancy, France
[2] CNR, IAC, I-00161 Rome, Italy
[3] Univ Bourgogne, CNRS, Le2i, F-21078 Dijon, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2009年 / 26卷 / 01期
关键词
Quantum control; Control of PDE; Approximate controllability; Bilinear Schrodinger equation; Galerkin approximation; Density matrix; QUANTUM-MECHANICAL SYSTEMS; TIME; RESONANCE;
D O I
10.1016/j.anihpc.2008.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove approximate controllability of the bilinear Schrodinger equation in the case in which the uncontrolled Hamiltonian has discrete non-resonant spectrum. The results that are obtained apply both to bounded or unbounded domains and to the case in which the control potential is bounded or unbounded. The method relies on finite-dimensional techniques applied to the Galerkin approximations and permits, in addition, to get some controllability properties for the density matrix. Two examples are presented: the harmonic oscillator and the 3D well of potential, both controlled by suitable potentials. (c) 2008 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:329 / 349
页数:21
相关论文
共 50 条
  • [41] Global exact controllability in infinite time of Schrodinger equation
    Nersesyan, Vahagn
    Nersisyan, Hayk
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 97 (04): : 295 - 317
  • [42] Explicit approximate controllability of the Schrodinger equation with a polarizability term
    Morancey, Morgan
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2013, 25 (03) : 407 - 432
  • [43] DISPERSION AND CONTROLLABILITY FOR THE SCHRODINGER EQUATION ON NEGATIVELY CURVED MANIFOLDS
    Anantharaman, Nalini
    Riviere, Gabriel
    ANALYSIS & PDE, 2012, 5 (02): : 313 - 338
  • [44] Local controllability of a 1-D Schrodinger equation
    Beauchard, K
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (07): : 851 - 956
  • [45] EXACT BOUNDARY CONTROLLABILITY AND STABILIZABILITY FOR THE SCHRODINGER-EQUATION
    MACHTYNGIER, E
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 310 (12): : 801 - 806
  • [46] Controllability of the nonlinear Schrodinger equation in the vicinity of the ground state
    Lange, H.
    Teismann, H.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2007, 30 (13) : 1483 - 1505
  • [47] GLOBAL CONTROLLABILITY AND STABILIZATION FOR THE NONLINEAR SCHRODINGER EQUATION ON AN INTERVAL
    Laurent, Camille
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2010, 16 (02) : 356 - 379
  • [48] Symmetries of the discrete nonlinear Schrodinger equation
    Heredero, RH
    Levi, D
    Winternitz, P
    THEORETICAL AND MATHEMATICAL PHYSICS, 2001, 127 (03) : 729 - 737
  • [49] Discrete Spectrum of 2+1-Dimensional Nonlinear Schrodinger Equation and Dynamics of Lumps
    Villarroel, Javier
    Prada, Julia
    Estevez, Pilar G.
    ADVANCES IN MATHEMATICAL PHYSICS, 2016, 2016
  • [50] Solitons in the discrete nonpolynomial Schrodinger equation
    Maluckov, Aleksandra
    Hadzievski, Ljupco
    Malomed, Boris A.
    Salasnich, Luca
    PHYSICAL REVIEW A, 2008, 78 (01):