Controllability of the discrete-spectrum Schrodinger equation driven by an external field

被引:107
作者
Chambrion, Thomas [1 ]
Mason, Paolo [1 ,2 ]
Sigalotti, Mario [1 ]
Boscain, Ugo [3 ]
机构
[1] Nancy Univ, CNRS, INRIA, Inst Elie Cartan,UMR 7502, F-54506 Vandoeuvre Les Nancy, France
[2] CNR, IAC, I-00161 Rome, Italy
[3] Univ Bourgogne, CNRS, Le2i, F-21078 Dijon, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2009年 / 26卷 / 01期
关键词
Quantum control; Control of PDE; Approximate controllability; Bilinear Schrodinger equation; Galerkin approximation; Density matrix; QUANTUM-MECHANICAL SYSTEMS; TIME; RESONANCE;
D O I
10.1016/j.anihpc.2008.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove approximate controllability of the bilinear Schrodinger equation in the case in which the uncontrolled Hamiltonian has discrete non-resonant spectrum. The results that are obtained apply both to bounded or unbounded domains and to the case in which the control potential is bounded or unbounded. The method relies on finite-dimensional techniques applied to the Galerkin approximations and permits, in addition, to get some controllability properties for the density matrix. Two examples are presented: the harmonic oscillator and the 3D well of potential, both controlled by suitable potentials. (c) 2008 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:329 / 349
页数:21
相关论文
共 41 条
[21]  
DALESSANDRO D, 2009, APPL MATH NONLINEAR
[22]  
Davies E. B., 1995, CAMBRIDGE STUDIES AD, V42
[23]  
Henrot A, 2006, FRONT MATH, P1
[24]  
Hübler P, 2000, J CHEM PHYS, V113, P2056, DOI 10.1063/1.482015
[25]   Optimal bilinear control of an abstract Schrodinger equation [J].
Ito, Kazufumi ;
Kunisch, Karl .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2007, 46 (01) :274-287
[26]   CONTROL-SYSTEMS ON LIE GROUPS [J].
JURDJEVIC, V ;
SUSSMANN, HJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1972, 12 (02) :313-+
[27]  
Kato T, 1966, GRUND MATH WISS, V132
[28]   Sub-Riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer [J].
Khaneja, N ;
Glaser, SJ ;
Brockett, R .
PHYSICAL REVIEW A, 2002, 65 (03) :1-11
[29]   Controllability of quantum harmonic oscillators [J].
Mirrahimi, M ;
Rouchon, P .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (05) :745-747
[30]   OPTIMAL-CONTROL OF QUANTUM-MECHANICAL SYSTEMS - EXISTENCE, NUMERICAL APPROXIMATION, AND APPLICATIONS [J].
PEIRCE, AP ;
DAHLEH, MA ;
RABITZ, H .
PHYSICAL REVIEW A, 1988, 37 (12) :4950-4964