Controllability of the discrete-spectrum Schrodinger equation driven by an external field

被引:107
作者
Chambrion, Thomas [1 ]
Mason, Paolo [1 ,2 ]
Sigalotti, Mario [1 ]
Boscain, Ugo [3 ]
机构
[1] Nancy Univ, CNRS, INRIA, Inst Elie Cartan,UMR 7502, F-54506 Vandoeuvre Les Nancy, France
[2] CNR, IAC, I-00161 Rome, Italy
[3] Univ Bourgogne, CNRS, Le2i, F-21078 Dijon, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2009年 / 26卷 / 01期
关键词
Quantum control; Control of PDE; Approximate controllability; Bilinear Schrodinger equation; Galerkin approximation; Density matrix; QUANTUM-MECHANICAL SYSTEMS; TIME; RESONANCE;
D O I
10.1016/j.anihpc.2008.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove approximate controllability of the bilinear Schrodinger equation in the case in which the uncontrolled Hamiltonian has discrete non-resonant spectrum. The results that are obtained apply both to bounded or unbounded domains and to the case in which the control potential is bounded or unbounded. The method relies on finite-dimensional techniques applied to the Galerkin approximations and permits, in addition, to get some controllability properties for the density matrix. Two examples are presented: the harmonic oscillator and the 3D well of potential, both controlled by suitable potentials. (c) 2008 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:329 / 349
页数:21
相关论文
共 41 条
[1]  
Adami R, 2005, IEEE DECIS CONTR P, P1080
[2]   On finite-dimensional projections of distributions for solutions of randomly forced 2D Navier-Stokes equations [J].
Agrachev, A. ;
Kuksin, S. ;
Sarychev, A. ;
Shirikyan, A. .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2007, 43 (04) :399-415
[3]  
Agrachev A.A., 2004, Control theory from the geometric viewpoint, V87
[4]   An estimation of the controllability time for single-input systems on compact Lie groups [J].
Agrachev, Andrei ;
Chambrion, Thomas .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2006, 12 (03) :409-441
[5]   Controllability of 2D Euler and Navier-Stokes equations by degenerate forcing [J].
Agrachev, Andrey A. ;
Sarychev, Andrey V. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 265 (03) :673-697
[6]   GENERICITY OF SIMPLE EIGENVALUES FOR ELLIPTIC PDES [J].
ALBERT, JH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 48 (02) :413-418
[7]   Notions of controllability for bilinear multilevel quantum systems [J].
Albertini, F ;
D'Alessandro, D .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (08) :1399-1403
[8]   Controllability properties for finite dimensional quantum Markovian master equations [J].
Altafini, C .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (06) :2357-2372
[9]   Controllability of quantum mechanical systems by root space decomposition of su(N) [J].
Altafini, C .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (05) :2051-2062
[10]  
[Anonymous], P 45 IEEE C DEC CONT