Salicylic Acid (SA) Induced Alterations in Growth, Biochemical Attributes and Antioxidant Enzyme Activity in Faba Bean (Vicia faba L.) Seedlings under NaCl Toxicity

被引:67
作者
Ahmad, P. [1 ,2 ]
Alyemeni, M. N. [1 ]
Ahanger, M. A. [3 ]
Egamberdieva, D. [4 ]
Wijaya, L. [1 ]
Alam, P. [5 ]
机构
[1] King Saud Univ, Dept Bot & Microbiol, Coll Sci, POB 2460, Riyadh 11451, Saudi Arabia
[2] SP Coll, Dept Bot, Srinagar 190001, Jammu & Kashmir, India
[3] Jiwaji Univ, Sch Studies Bot, Gwalior 474011, MP, India
[4] Leibniz Ctr Agr Landscape Res, Inst Landscape Biogeochem, Muncheberg, Germany
[5] Prince Sattam bin Abdulaziz Univ PSAU, Dept Biol, Coll Sci & Humanities, Alkharj 11942, Saudi Arabia
关键词
Vicia faba; lipid peroxidation; antioxidants; osmolytes; salicylic acid; salinity stress; OXIDATIVE DAMAGE; PLANT-GROWTH; STRESS; CHLOROPLASTS; ALLEVIATION; GLUTATHIONE; CULTIVARS;
D O I
10.1134/S1021443718010132
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In the present study we tried to evaluate the effect of salicylic acid (SA) in alleviating the negative effects of salinity stress. NaCl stress (50 and 100 mM) declines the shoot and root length and maximum decrease was observed at 100 mM concentration of NaCl. Similarly shoot dry weight decreased by 57.14% and root dry weight by 67.24% with 100 mM NaCl stress. The pigments and leaf relative water content (LRWC) were also observed to decline with increase in NaCl concentration. However, supplementation of SA to NaCl stressed seedlings showed enhanced length and dry weight of shoot and root. The pigment and LRWC also increased by the application of SA in the present study. NaCl stress also enhanced proline and glycine betaine (GB) by 3.01 and 2.04 folds, respectively; further enhancement was recorded by the application of SA. Hydrogen peroxide (H2O2) and malondialdehyde (MDA) content also showed rise in accumulation, however, seedlings treated with SA and NaCl (100 mM + SA) declines the H2O2 accumulation to 1.90 from 2.45 folds and MDA to 1.69 from 2.34 folds over the control. Antioxidants were observed to increase with NaCl concentration and further increase was recorded by the application of SA. Indoleacetic acid (IAA) and indole butyric acid (IBA) decreased by 36.60 and 44.16%, respectively, and ABA increased by 750% with 100 mM NaCl. Addition of SA to NaCl stressed seedlings enhanced the IAA and IBA and decreased the ABA concentration to appreciable level. NaCl is also responsible for the higher accumulation of Na+ and Na+/K+ ratio and decreased uptake of Ca2+ and K+. Supplementation of SA decreased the Na+ accumulation and enhanced the uptake of Ca2+ and K+ in NaCl stressed seedlings. In conclusion, SA supplementation mitigates the negative effects of NaCl toxicity in faba bean seedlings through the modulation of different osmoprotectants, antioxidants and nutrients uptake.
引用
收藏
页码:104 / 114
页数:11
相关论文
共 30 条
[1]   Potassium up-regulates antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L) [J].
Ahanger, Mohammad Abass ;
Agarwal, R. M. .
PROTOPLASMA, 2017, 254 (04) :1471-1486
[2]   Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid [J].
Ahmad, P. ;
Nabi, G. ;
Ashraf, M. .
SOUTH AFRICAN JOURNAL OF BOTANY, 2011, 77 (01) :36-44
[3]   Nitric Oxide Mitigates Salt Stress by Regulating Levels of Osmolytes and Antioxidant Enzymes in Chickpea [J].
Ahmad, Parvaiz ;
Latef, Arafat A. Abdel ;
Hashem, Abeer ;
Abd Allah, Elsayed F. ;
Gucel, Salih ;
Tran, Lam-Son P. .
FRONTIERS IN PLANT SCIENCE, 2016, 7
[4]   Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system [J].
Ahmad, Parvaiz ;
Hashem, Abeer ;
Abd-Allah, Elsayed Fathi ;
Alqarawi, A. A. ;
John, Riffat ;
Egamberdieva, Dilfuza ;
Gucel, Salih .
FRONTIERS IN PLANT SCIENCE, 2015, 6
[5]   Enhancing growth performance and systemic acquired resistance of medicinal plant Sesbania sesban (L.) Merr using arbuscular mycorrhizal fungi under salt stress [J].
Allah, Elsayed Fathi Abd ;
Hashem, Abeer ;
Alqarawi, Abdulaziz Abdullah ;
Bahkali, Ali Hassan ;
Alwhibi, Mona S. .
SAUDI JOURNAL OF BIOLOGICAL SCIENCES, 2015, 22 (03) :274-283
[6]  
Ashraf MA, 2010, PAK J BOT, V42, P559
[7]   RAPID DETERMINATION OF FREE PROLINE FOR WATER-STRESS STUDIES [J].
BATES, LS ;
WALDREN, RP ;
TEARE, ID .
PLANT AND SOIL, 1973, 39 (01) :205-207
[8]   Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings [J].
Borsani, O ;
Valpuesta, V ;
Botella, MA .
PLANT PHYSIOLOGY, 2001, 126 (03) :1024-1030
[9]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[10]   Glutathione transferase supergene family in tomato: Salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid [J].
Csiszar, Jolan ;
Horvath, Edit ;
Vary, Zsolt ;
Galle, Agnes ;
Bela, Krisztina ;
Brunner, Szilvia ;
Tari, Irma .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2014, 78 :15-26