Visualizing Molecular Wavefunctions Using Monte Carlo Methods

被引:5
|
作者
Alexander, S. A. [1 ]
Coldwell, R. L. [2 ]
机构
[1] Southwestern Univ, Dept Phys, Georgetown, TX 78626 USA
[2] Univ Florida, Dept Phys, Gainesville, FL 32611 USA
关键词
intracule density; extracule density; electron density; Laplacians; EXTRACULE DENSITY DISTRIBUTIONS; HYDROGEN MOLECULE; GROUND-STATE; INTRACULE; SYSTEMS; LOCALIZATION; LAPLACIAN;
D O I
10.1002/qua.21774
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using explicitly correlated wavefunctions and variational Monte Carlo we calculate the electron density, the electron density difference, the intracule density, the extracule density, two forms of the kinetic energy I density, the Laplacian of the electron density, the Laplacian of the intracule density, and the Laplacian of the extracule density on a dense grid of points for the ground state of the hydrogen molecule at three internuclear distances (0.6, 1.4, 8.0). With these values we construct a contour plot of each function and describe how it can be used to Visualize the distribution of electrons in this molecule. We also examine the influence of electron correlation on each expectation value by calculating each function with a Hartree-Fock wavefunction and then comparing these values With Our explicitly correlated values. (C) 2008 Wiley Periodicals, Inc. Int J Quantum Chem 109: 385-400, 2009
引用
收藏
页码:385 / 400
页数:16
相关论文
共 50 条
  • [21] Probabilistic Initiation and Termination for MEG Multiple Dipole Localization Using Sequential Monte Carlo Methods
    Chen, Xi
    Sarkka, Simo
    Godsill, Simon
    2013 16TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2013, : 580 - 587
  • [22] Linear multistep methods, particle filtering and sequential Monte Carlo
    Arnold, Andrea
    Calvetti, Daniela
    Somersalo, Erkki
    INVERSE PROBLEMS, 2013, 29 (08)
  • [23] Methods for calculating forces within quantum Monte Carlo simulations
    Badinski, A.
    Haynes, P. D.
    Trail, J. R.
    Needs, R. J.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (07)
  • [24] First Principles Methods: A Perspective from Quantum Monte Carlo
    Morales, Miguel A.
    Clay, Raymond
    Pierleoni, Carlo
    Ceperley, David M.
    ENTROPY, 2014, 16 (01) : 287 - 321
  • [25] APPLICATION OF SEQUENTIAL MONTE CARLO METHODS FOR SPACE OBJECT TRACKING
    Hussein, Islam I.
    Zaidi, Waqar
    Faber, Weston
    Roscoe, Christopher W. T.
    Wilkins, Matthew P.
    Schumacher, Paul W., Jr.
    Bolden, Mark
    SPACEFLIGHT MECHANICS 2017, PTS I - IV, 2017, 160 : 1313 - 1328
  • [26] Hybrid Auxiliary Field Quantum Monte Carlo for Molecular Systems
    Chen, Yixiao
    Zhang, Linfeng
    Weinan, E.
    Car, Roberto
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (14) : 4484 - 4493
  • [27] The effective geometry Monte Carlo algorithm: Applications to molecular communication
    Dinc, Fatih
    Thiele, Leander
    Akdeniz, Bayram Cevdet
    PHYSICS LETTERS A, 2019, 383 (22) : 2594 - 2603
  • [28] Monte Carlo Adaptive Resolution Simulation of Multicomponent Molecular Liquids
    Potestio, Raffaello
    Espanol, Pep
    Delgado-Buscalioni, Rafael
    Everaers, Ralf
    Kremer, Kurt
    Donadio, Davide
    PHYSICAL REVIEW LETTERS, 2013, 111 (06)
  • [29] Phaseless quantum Monte-Carlo approach to strongly correlated superconductors with stochastic Hartree-Fock-Bogoliubov wavefunctions
    Juillet, Olivier
    Leprevost, Alexandre
    Bonnard, Jeremy
    Fresard, Raymond
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (17)
  • [30] Nonlinear biases, stochastically sampled effective Hamiltonians, and spectral functions in quantum Monte Carlo methods
    Blunt, Nick S.
    Alavi, Ali
    Booth, George H.
    PHYSICAL REVIEW B, 2018, 98 (08)