Stability and integrability of horizontally conformal maps and harmonic morphisms

被引:0
作者
Kim, J. -J. [1 ]
Yun, G. [1 ]
机构
[1] Myong Ji Univ, Dept Math, Yongin 449728, Gyeonggi, South Korea
基金
新加坡国家研究基金会;
关键词
Energy stable map; harmonic morphism; horizontally conformal map; horizontally homothetic; integrability; stable minimal submanifold; 53C43; 58E20; SUBMANIFOLDS;
D O I
10.1002/mana.201200183
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study stability of minimal fibers and integrability of horizontal distribution for horizontally conformal maps and harmonic morphisms. Let phi:(Mn,g)(Nm,h) be a horizontally conformal submersion. We prove that if the horizontal distribution is integrable, then any minimal fiber of phi is volume-stable. This result is an improved version of the main theorem in [15]. As a corollary, we obtain if phi is a submersive harmonic morphism whose fibers are totally geodesic, and the horizontal distribution is integrable, then any fiber of phi is volume-stable and so such a map phi is energy-stable if M is compact. We also show that if phi:(Mn,g)(Nm,h) is a horizontally conformal map from a compact Riemannian manifold M into an orientable Riemannian manifold N which is horizontally homothetic, and if the pull-back of the volume form of N is harmonic, then the horizontal distribution is integrable and phi is a harmonic morphism.
引用
收藏
页码:1479 / 1490
页数:12
相关论文
共 15 条
  • [1] [Anonymous], 1992, The Geometry of Harmonic Morphisms
  • [2] P-HARMONIC MAPS AND MINIMAL SUBMANIFOLDS
    BAIRD, P
    GUDMUNDSSON, S
    [J]. MATHEMATISCHE ANNALEN, 1992, 294 (04) : 611 - 624
  • [3] Baird P., 2003, London Math. Soc. Monogr. (N.S.), V29
  • [4] Baird P., 1981, LECT NOTES MATH, V894, P1
  • [5] p-HARMONIC MORPHISMS, COHOMOLOGY CLASSES AND SUBMERSIONS
    Chen, Bang-Yen
    Wei, Shihshu Walter
    [J]. TAMKANG JOURNAL OF MATHEMATICS, 2009, 40 (04): : 377 - 382
  • [6] Riemannian submersions, minimal immersions and cohomology class
    Chen, BY
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2005, 81 (10) : 162 - 167
  • [7] Fuglede B., 1978, Annales de l'institut Fourier, V28, P107
  • [8] Ishihara T., 1979, Journal of Mathematics of Kyoto University, V19, P215
  • [9] Jin H., 2002, CONT MATH, V308, P205
  • [10] KASUE A, 1990, OSAKA J MATH, V27, P899