Construction of MnO2 nanosheets@graphenated carbon nanotube networks core-shell heterostructure on 316L stainless steel as binder-free supercapacitor electrodes

被引:17
作者
Lei, Rui [1 ,2 ,3 ]
Gao, Jianhong [4 ]
Qi, Lifang [1 ,3 ]
Ye, Lanlan [5 ]
Wang, Chao [1 ,3 ]
Le, Yao [1 ,3 ]
Huang, Yu [2 ]
Shi, Xiaogang [2 ]
Ni, Hongwei [2 ]
机构
[1] Hubei Univ Educ, Coll Architecture & Mat Engn, Inst Applicat Green Energy Mat, Gaoxin Rd 129, Wuhan 430205, Peoples R China
[2] Wuhan Univ Sci & Technol, State Key Lab Refractories & Met, Key Lab Ferrous Met & Resources Utilizat, Minist Educ, Wuhan 430081, Peoples R China
[3] Hubei Univ Educ, Inst Mat Res & Engn, Gaoxin Rd 129, Wuhan 430205, Peoples R China
[4] Wuhan Inst Technol, Sch Mat Sci & Engn, Wuhan 430205, Peoples R China
[5] Wuhan Metro Grp Co Ltd, Wuhan 430030, Peoples R China
基金
中国博士后科学基金;
关键词
Carbon nanotube networks; MnO2; nanosheets; Supercapacitors; Core-shell; Binder-free; ASYMMETRIC SUPERCAPACITOR; MANGANESE-DIOXIDE; PERFORMANCE; NANOFIBER; ENERGY; NANOPARTICLES; FOAM; FABRICATION; GROWTH; FILMS;
D O I
10.1016/j.ijhydene.2019.09.070
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon nanotubes are regarded as typical and promising electrode materials in supercapacitors. However, small specific capacitance of carbon nanotubes restricts the practical application in high energy density devices. Herein, MnO2 nanosheets@graphenated carbon nanotube networks are synthesized directly on 316L stainless steel as binder-free electrodes for high-performance supercapacitors. Graphenated carbon nanotube networks are grown in-situ on stainless steel by chemical vapor deposition method followed by annealing treatment. Subsequently, MnO2 nanosheets are uniformly deposited on graphenated carbon nanotube networks to construct core-shell heterostructure based on the facile hydrothermal reaction using KMnO4 as the precursor. Core carbon nanotube networks can offer a stable structural backbone and shell MnO2 nanosheets can shorten diffusion paths of ions. The MnO2 nanosheets@graphenated carbon nanotube networks exhibit a high specific capacitance of 575.4 F g(-1) (areal capacitance of 274 mF cm(-2)) at the current density of 0.5 mA cm(-2) and good cycling stability (93% of capacity retention after 6000 cycles), due to the synergistic effects between pseudocapacitive MnO2 nanosheets and conductive carbon nanotube networks. The developed synthetic strategy offers design guidelines for the construction of advanced binder-free electrodes for high-performance supercapacitors. (C) 2019 Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.
引用
收藏
页码:28930 / 28939
页数:10
相关论文
共 46 条
[1]   Ternary functionalised carbon nanofibers/polypyrrole/manganese oxide as high specific energy electrode for supercapacitor [J].
Abdah, Muhammad Amirul Aizat Mohd ;
Rahman, Norizah Abdul ;
Sulaiman, Yusran .
CERAMICS INTERNATIONAL, 2019, 45 (07) :8433-8439
[2]   Direct growth of iron oxide nanoparticles filled multi-walled carbon nanotube via chemical vapour deposition method as high-performance supercapacitors [J].
Atchudan, Raji ;
Edison, Thomas Nesakumar Jebakumar Immanuel ;
Perumal, Suguna ;
RanjithKumar, Deivasigamani ;
Lee, Yong Rok .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (04) :2349-2360
[3]   Hierarchical three-dimensional mesoporous MnO2 nanostructures for high performance aqueous asymmetric supercapacitors [J].
Bag, Sourav ;
Raj, C. Retna .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (02) :587-595
[4]   Oxygen Evolution Assisted Fabrication of Highly Loaded Carbon Nanotube/MnO2 Hybrid Films for High-Performance Flexible Pseudosupercapacitors [J].
Chen, Hongyuan ;
Zeng, Sha ;
Chen, Minghai ;
Zhang, Yongyi ;
Zheng, Lianxi ;
Li, Qingwen .
SMALL, 2016, 12 (15) :2035-2045
[5]   Bacterial-Cellulose-Derived Carbon Nanofiber@MnO2 and Nitrogen-Doped Carbon Nanofiber Electrode Materials: An Asymmetric Supercapacitor with High Energy and Power Density [J].
Chen, Li-Feng ;
Huang, Zhi-Hong ;
Liang, Hai-Wei ;
Guan, Qing-Fang ;
Yu, Shu-Hong .
ADVANCED MATERIALS, 2013, 25 (34) :4746-4752
[6]   Elastomeric and Dynamic MnO2/CNT Core-Shell Structure Coiled Yarn Supercapacitor [J].
Choi, Changsoon ;
Sim, Hyeon Jun ;
Spinks, Geoffrey M. ;
Lepro, Xavier ;
Baughman, Ray H. ;
Kim, Seon Jeong .
ADVANCED ENERGY MATERIALS, 2016, 6 (05)
[7]   Synthesis of hierarchical tube-like yolk-shell Co3O4@NiMoO4 for enhanced supercapacitor performance [J].
Dong, Tao ;
Li, Meng ;
Wang, Peng ;
Yang, Ping .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (31) :14569-14577
[8]   Facile synthesis of carbon encapsulated RuO2 nanorods for supercapacitor and electrocatalytic hydrogen evolution reaction [J].
Edison, Thomas Nesakumar Jebakumar Immanuel ;
Atchudan, Raji ;
Lee, Yong Rok .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (04) :2323-2329
[9]   Synthesis of CuCo2S4 nanosheet arrays on Ni foam as binder-free electrode for asymmetric supercapacitor [J].
Fan, Le-Qing ;
Pan, Fei ;
Tu, Qiu-Mei ;
Gu, Yun ;
Huang, Jian-Ling ;
Huang, Yun-Fang ;
Wu, Ji-Huai .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (52) :23372-23381
[10]  
Fu W, 2018, ADV ENERGY MAT