Conformal invariance, droplets, and entanglement

被引:1
作者
Grimmett, GY [1 ]
机构
[1] Univ Cambridge, Stat Lab, DPMMS, Cambridge CB2 1SB, England
来源
STATE OF THE ART IN PROBABILITY AND STATISTICS: FESTSCHRIFT FOR WILLEM R VAN ZWET | 2001年 / 36卷
关键词
conformal invariance; droplet; large deviations; entanglement; percolation; Ising model; Potts model; random-cluster model;
D O I
10.1214/lnms/1215090075
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Very brief surveys are presented of three topics of importance for interacting random systems, namely conformal invariance, droplets, and entanglement. For case of description, the emphasis throughout is upon progress and open problems for the percolation model, rather than for the more general random-cluster model. Substantial recent progress has been made on each of these topics, as summarised here. Detailed bibliographies of recent work are included.
引用
收藏
页码:310 / 323
页数:14
相关论文
共 35 条
[1]  
AIZEMAN M, 1995, P STATPHYS 1995 XIAM, P104
[2]   On the number of incipient spanning clusters [J].
Aizenman, M .
NUCLEAR PHYSICS B, 1997, 485 (03) :551-582
[3]   STRICT MONOTONICITY FOR CRITICAL-POINTS IN PERCOLATION AND FERROMAGNETIC MODELS [J].
AIZENMAN, M ;
GRIMMETT, G .
JOURNAL OF STATISTICAL PHYSICS, 1991, 63 (5-6) :817-835
[4]  
AIZENMAN M, 1999, TORTUOSITY BOUNDS RA
[5]  
Aizenman M., 1998, IMA VOL MATH APPL, V99, P1
[6]   THE WULFF CONSTRUCTION AND ASYMPTOTICS OF THE FINITE CLUSTER DISTRIBUTION FOR 2-DIMENSIONAL BERNOULLI PERCOLATION [J].
ALEXANDER, K ;
CHAYES, JT ;
CHAYES, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 131 (01) :1-50
[7]  
[Anonymous], 1982, PERCOLATION THEORY M
[8]  
[Anonymous], LECT NOTES MATH
[9]  
BAIN AFR, 1999, UNPUB
[10]   Conformal invariance of Voronoi percolation [J].
Benjamini, I ;
Schramm, O .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 197 (01) :75-107