REGULAR VARIATION AND SMILE ASYMPTOTICS

被引:50
作者
Benaim, S. [1 ]
Friz, P. [1 ]
机构
[1] Univ Cambridge, Stat Lab, Cambridge CB3 0WB, England
关键词
regular variation; implied volatility;
D O I
10.1111/j.1467-9965.2008.00354.x
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We consider risk-neutral returns and show how their tail asymptotics translate directly to asymptotics of the implied volatility smile, thereby sharpening Roger Lee's celebrated moment formula. The theory of regular variation provides the ideal mathematical framework to formulate and prove such results. The practical value of our formulae comes from the vast literature on tail asymptotics and our conditions are often seen to be true by simple inspection of known results.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 10 条
  • [1] ALBIN JMP, 2005, ASYMPTOTIC BEHAV L 1
  • [2] ALBIN JMP, STOCHASTIC IN PRESS
  • [3] Radiative B decay spectrum: DGE at NNLO
    Andersen, Jeppe R.
    Gardi, Einan
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2007, (01):
  • [4] [Anonymous], 2003, LEVY PROCESSES FINAN
  • [5] Barndorff-Nielsen O.E, 1997, Finance Stoch, V2, P41, DOI DOI 10.1007/S007800050032
  • [6] Bingham N., 1989, Regular Variation
  • [7] The finite moment log stable process and option pricing
    Carr, P
    Wu, LR
    [J]. JOURNAL OF FINANCE, 2003, 58 (02) : 753 - 777
  • [8] APPROXIMATIONS FOR COMPOUND POISSON AND POLYA PROCESSES
    EMBRECHTS, P
    JENSEN, JL
    MAEJIMA, M
    TEUGELS, JL
    [J]. ADVANCES IN APPLIED PROBABILITY, 1985, 17 (03) : 623 - 637
  • [9] GATHERAL J, 2007, VOLATILITY SURFACE P
  • [10] The moment formula for implied volatility at extreme strikes
    Lee, RW
    [J]. MATHEMATICAL FINANCE, 2004, 14 (03) : 469 - 480