Multicomponent nonlinear Schrodinger equation in 2+1 dimensions, its Darboux transformation and soliton solutions

被引:3
|
作者
Riaz, H. Wajahat A. [1 ,2 ]
机构
[1] Univ Punjab, Dept Phys, Quaid E Azam Campus, Lahore 54590, Pakistan
[2] Univ Punjab, Coll Informat Technol, Allama Iqbal Campus, Lahore 54000, Pakistan
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2019年 / 134卷 / 05期
关键词
DETERMINANTS; SYSTEMS; MODEL;
D O I
10.1140/epjp/i2019-12597-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
.In nonlinear media, propagation of pulses is generally described by multicomponent fields. In this paper, a vector (or multicomponent) (2 + 1)-dimensional nonlinear Scrodinger (NLS) equation is studied. By generalizing 2x2 Lax matrices to 2Nx2N, we derive the Lax pair for the multicomponent (2 + 1)-dimensional NLS equation. We construct the Darboux matrix for the system and obtain K-soliton solutions and express these solutions in terms of quasideterminants. Within the framework of quasideterminants and symbolic computation, we compute 1-, 2- and 3-soliton solutions for (2 + 1)-dimensional and coupled (2 + 1)-dimensional NLS equations. Graphically, it has been shown that solitons of the (2 + 1)-dimensional and coupled (2 + 1)-dimensional NLS equations propagate with different velocities in the xt-, yt-, and xy-plane, but keeping the amplitude and width unchanged.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Darboux transformations for a Bogoyavlenskii equation in 2+1 dimensions
    Estévez, PG
    Hernáez, GA
    PROCEEDINGS OF THE WORKSHOP ON NONLINEARITY, INTEGRABILITY AND ALL THAT: TWENTY YEARS AFTER NEEDS '79, 2000, : 117 - 123
  • [42] Soliton, Breather, and Rogue Wave for a (2+1)-Dimensional Nonlinear Schrodinger Equation
    Zhang, Hai-Qiang
    Liu, Xiao-Li
    Wen, Li-Li
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (02): : 95 - 101
  • [43] Soliton solutions to coupled nonlinear wave equations in (2+1)-dimensions
    Jawad, A. J. M.
    Johnson, S.
    Yildirim, A.
    Kumar, S.
    Biswas, A.
    INDIAN JOURNAL OF PHYSICS, 2013, 87 (03) : 281 - 287
  • [44] Darboux Transformation and Soliton Solutions for Inhomogeneous Coupled Nonlinear Schrodinger Equations with Symbolic Computation
    Xue Yu-Shan
    Tian Bo
    Zhang Hai-Qiang
    Liu Wen-Jun
    Li Li-Li
    Qi Feng-Hua
    Zhan Yan
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 52 (05) : 888 - 896
  • [45] Darboux transformation and soliton solutions for the coupled cubic-quintic nonlinear Schrodinger equations in nonlinear optics
    Qi, Feng-Hua
    Tian, Bo
    Lu, Xing
    Guo, Rui
    Xue, Yu-Shan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (06) : 2372 - 2381
  • [46] DARBOUX TRANSFORMATION OF A NONLINEAR EVOLUTION EQUATION AND ITS EXPLICIT SOLUTIONS
    李文敏
    韩有攀
    周高军
    Acta Mathematica Scientia, 2011, 31 (04) : 1457 - 1464
  • [47] DARBOUX TRANSFORMATION OF A NONLINEAR EVOLUTION EQUATION AND ITS EXPLICIT SOLUTIONS
    Li Wenmin
    Han Youpan
    Zhou Gaojun
    ACTA MATHEMATICA SCIENTIA, 2011, 31 (04) : 1457 - 1464
  • [48] Darboux transformation and soliton solutions of a nonlocal Hirota equation
    Xia, Yarong
    Yao, Ruoxia
    Xin, Xiangpeng
    CHINESE PHYSICS B, 2022, 31 (02)
  • [49] New Exact Solutions of the (2+1)-Dimensional Nonlinear Schrodinger Equation
    Abdel-Rahman, Reda G.
    CHINESE JOURNAL OF PHYSICS, 2008, 46 (05) : 495 - 510
  • [50] Darboux transformation and explicit solutions for 2+1-dimensional nonlocal Schrodinger equation
    Zhang, Yan
    Liu, Yinping
    APPLIED MATHEMATICS LETTERS, 2019, 92 : 29 - 34