Multicomponent nonlinear Schrodinger equation in 2+1 dimensions, its Darboux transformation and soliton solutions

被引:3
|
作者
Riaz, H. Wajahat A. [1 ,2 ]
机构
[1] Univ Punjab, Dept Phys, Quaid E Azam Campus, Lahore 54590, Pakistan
[2] Univ Punjab, Coll Informat Technol, Allama Iqbal Campus, Lahore 54000, Pakistan
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2019年 / 134卷 / 05期
关键词
DETERMINANTS; SYSTEMS; MODEL;
D O I
10.1140/epjp/i2019-12597-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
.In nonlinear media, propagation of pulses is generally described by multicomponent fields. In this paper, a vector (or multicomponent) (2 + 1)-dimensional nonlinear Scrodinger (NLS) equation is studied. By generalizing 2x2 Lax matrices to 2Nx2N, we derive the Lax pair for the multicomponent (2 + 1)-dimensional NLS equation. We construct the Darboux matrix for the system and obtain K-soliton solutions and express these solutions in terms of quasideterminants. Within the framework of quasideterminants and symbolic computation, we compute 1-, 2- and 3-soliton solutions for (2 + 1)-dimensional and coupled (2 + 1)-dimensional NLS equations. Graphically, it has been shown that solitons of the (2 + 1)-dimensional and coupled (2 + 1)-dimensional NLS equations propagate with different velocities in the xt-, yt-, and xy-plane, but keeping the amplitude and width unchanged.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] LARGE-TIME ASYMPTOTICS OF SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION IN 2+1 DIMENSIONS
    NAUMKIN, PI
    RUSSIAN ACADEMY OF SCIENCES IZVESTIYA MATHEMATICS, 1994, 43 (02): : 373 - 384
  • [32] Darboux transformation and explicit solutions for the (2+1)-dimensional nonlocal nonlinear Schrodinger-Maxwell-Bloch system
    Song, Jiang-Yan
    Hao, Hui-Qin
    APPLIED MATHEMATICS LETTERS, 2019, 96 : 166 - 171
  • [33] Some general bright soliton solutions and interactions for a (2+1)-dimensional nonlocal nonlinear Schrodinger equation
    Li, Li
    Wang, Lu
    Yu, Faj
    APPLIED MATHEMATICS LETTERS, 2023, 141
  • [34] The Darboux transformation of the derivative nonlinear Schrodinger equation
    Xu, Shuwei
    He, Jingsong
    Wang, Lihong
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (30)
  • [35] Multi-soliton solutions for a (2+1)-dimensional variable-coefficient nonlinear Schrodinger equation
    Lan, Zhong-Zhou
    APPLIED MATHEMATICS LETTERS, 2018, 86 : 243 - 248
  • [36] Determining lump solutions for a combined soliton equation in (2+1)-dimensions
    Jin-Yun Yang
    Wen-Xiu Ma
    Chaudry Masood Khalique
    The European Physical Journal Plus, 135
  • [37] Determining lump solutions for a combined soliton equation in (2+1)-dimensions
    Yang, Jin-Yun
    Ma, Wen-Xiu
    Khalique, Chaudry Masood
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (06):
  • [38] DARBOUX TRANSFORMATION AND VARIOUS SOLUTIONS FOR A NONLINEAR EVOLUTION EQUATION IN (3+1)-DIMENSIONS
    Zhaqilao
    Li, Zhi-Bin
    MODERN PHYSICS LETTERS B, 2008, 22 (30): : 2945 - 2966
  • [39] A coupled nonlinear Schrodinger-type equation and its Darboux transformation
    Geng, Xianguo
    Wei, Jiao
    Xue, Bo
    MODERN PHYSICS LETTERS B, 2018, 32 (17):
  • [40] Optical soliton solutions for two coupled nonlinear Schrodinger systems via Darboux transformation
    Zhang, Hai-Qiang
    Li, Juan
    Xu, Tao
    Zhang, Ya-Xing
    Hu, Wei
    Tian, Bo
    PHYSICA SCRIPTA, 2007, 76 (05) : 452 - 460