Multicomponent nonlinear Schrodinger equation in 2+1 dimensions, its Darboux transformation and soliton solutions

被引:3
|
作者
Riaz, H. Wajahat A. [1 ,2 ]
机构
[1] Univ Punjab, Dept Phys, Quaid E Azam Campus, Lahore 54590, Pakistan
[2] Univ Punjab, Coll Informat Technol, Allama Iqbal Campus, Lahore 54000, Pakistan
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2019年 / 134卷 / 05期
关键词
DETERMINANTS; SYSTEMS; MODEL;
D O I
10.1140/epjp/i2019-12597-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
.In nonlinear media, propagation of pulses is generally described by multicomponent fields. In this paper, a vector (or multicomponent) (2 + 1)-dimensional nonlinear Scrodinger (NLS) equation is studied. By generalizing 2x2 Lax matrices to 2Nx2N, we derive the Lax pair for the multicomponent (2 + 1)-dimensional NLS equation. We construct the Darboux matrix for the system and obtain K-soliton solutions and express these solutions in terms of quasideterminants. Within the framework of quasideterminants and symbolic computation, we compute 1-, 2- and 3-soliton solutions for (2 + 1)-dimensional and coupled (2 + 1)-dimensional NLS equations. Graphically, it has been shown that solitons of the (2 + 1)-dimensional and coupled (2 + 1)-dimensional NLS equations propagate with different velocities in the xt-, yt-, and xy-plane, but keeping the amplitude and width unchanged.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Darboux transformation and soliton-like solutions of nonlinear Schrodinger equations
    Xia, TC
    Chen, XH
    Chen, DY
    CHAOS SOLITONS & FRACTALS, 2005, 26 (03) : 889 - 896
  • [22] A new nonlinear wave equation: Darboux transformation and soliton solutions
    Geng, Xianguo
    Shen, Jing
    Xue, Bo
    WAVE MOTION, 2018, 79 : 44 - 56
  • [23] Darboux transformation and soliton solutions in the parity-time-symmetric nonlocal vector nonlinear Schrodinger equation
    Zhang, Hai-Qiang
    Zhang, Meng-Yue
    Hu, Rui
    APPLIED MATHEMATICS LETTERS, 2018, 76 : 170 - 174
  • [24] Darboux transformation and soliton solutions of the (2+1)-dimensional Schwarz-Korteweg-de Vries equation
    Li, Xuemei
    Zhang, Mingxiao
    MODERN PHYSICS LETTERS B, 2020, 34 (25):
  • [25] Soliton and Breather Solutions for the Mixed Nonlinear Schrodinger Equation via N-Fold Darboux Transformation
    Hao, Hui-Qin
    Zhang, Jian-Wen
    Guo, Rui
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [26] An integrable (2+1)-dimensional nonlinear Schrodinger system and its optical soliton solutions
    Hosseini, K.
    Sadri, K.
    Mirzazadeh, M.
    Salahshour, S.
    OPTIK, 2021, 229
  • [27] Generalized Darboux transformation, semi-rational solutions and novel degenerate soliton solutions for a coupled nonlinear Schrodinger equation
    Zhang, Hong-Yi
    Zhang, Yu-Feng
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (04):
  • [28] Darboux Transformation and Soliton Solutions for the (2+1)-Dimensional Generalization of Shallow Water Wave Equation with Symbolic Computation
    闻小永
    孟祥花
    Communications in Theoretical Physics, 2013, 60 (08) : 194 - 200
  • [29] Darboux Transformation and Soliton Solutions for the (2+1)-Dimensional Generalization of Shallow Water Wave Equation with Symbolic Computation
    Wen Xiao-Yong
    Meng Xiang-Hua
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2013, 60 (02) : 194 - 200
  • [30] Nonlinear Schrodinger equation: Generalized Darboux transformation and rogue wave solutions
    Guo, Boling
    Ling, Liming
    Liu, Q. P.
    PHYSICAL REVIEW E, 2012, 85 (02):