Parameter extraction of solar cell models using repaired adaptive differential evolution

被引:287
作者
Gong, Wenyin [1 ]
Cai, Zhihua [1 ]
机构
[1] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
关键词
Solar cell models; Parameter extraction; Differential evolution; Parameter adaptation; Repairing technique; Ranking-based mutation; I-V CHARACTERISTICS; PHOTOVOLTAIC MODULES; OPTIMIZATION; IDENTIFICATION; ALGORITHM; DIODE;
D O I
10.1016/j.solener.2013.05.007
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Parameter extraction of solar cell models plays an important role in the simulation and design calculation of photovoltaic (PV) systems. In this paper, in order to fast and accurately extract the solar cell parameters, an improved adaptive differential evolution with crossover rate repairing technique and ranking-based mutation is proposed. The proposed method is referred to as R-cr-IJADE, which is an improved version of JADE. In R-cr-IJADE, including the parameter adaptation presented in JADE, the crossover rate repairing technique and the ranking-based mutation are also synergized to improve the performance of JADE when solving the parameter extraction problems of solar cell models. In order to verify the performance of R-cr-IJADE, it is used to extract the parameters of different solar cell models, i.e., single diode, double diode, and PV module. Compared with other parameter extraction techniques, experimental results indicate the superiority of R-cr-IJADE in terms of the quality of final solutions, success rate, and convergence speed. In addition, the simulated data with the extracted parameters of R-cr-IJADE are in very good agreement with the experimental data in all cases. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:209 / 220
页数:12
相关论文
共 50 条
  • [21] Parameter extraction of solar cell models using improved war strategy algorithm
    Xiao, Wenbo
    Zhou, Heng
    Xiao, Bangzhi
    AIP ADVANCES, 2024, 14 (03)
  • [22] Parameter extraction of solar cell models using chaotic asexual reproduction optimization
    Xiaofang Yuan
    Yuqing He
    Liangjiang Liu
    Neural Computing and Applications, 2015, 26 : 1227 - 1239
  • [23] Parameter fitting of PEMFC models based on adaptive differential evolution
    Cheng, Jixiang
    Zhang, Gexiang
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2014, 62 : 189 - 198
  • [24] Adaptive historical population-based differential evolution for PEM fuel cell parameter estimation
    Aljaidi, Mohammad
    Jangir, Pradeep
    Agrawal, Sunilkumar P.
    Pandya, Sundaram B.
    Parmar, Anil
    Anbarkhan, Samar Hussni
    Abualigah, Laith
    IONICS, 2025, 31 (01) : 641 - 674
  • [25] Parameter extraction of solar photovoltaic models via quadratic interpolation learning differential evolution
    Xiong, Guojiang
    Zhang, Jing
    Shi, Dongyuan
    Zhu, Lin
    Yuan, Xufeng
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (11): : 5595 - 5608
  • [26] Parameter extraction of solar photovoltaic module by using a novel hybrid marine predators - success history based adaptive differential evolution algorithm
    Naraharisetti, Jaya Naga Lakshmi
    Devarapalli, Ramesh
    Bathina, Venkateswararao
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 14550 - 14572
  • [27] Application of Symbiotic Organisms Search Algorithm for Parameter Extraction of Solar Cell Models
    Xiong, Guojiang
    Zhang, Jing
    Yuan, Xufeng
    Shi, Dongyuan
    He, Yu
    APPLIED SCIENCES-BASEL, 2018, 8 (11):
  • [28] Parameter Extraction of Solar Photovoltaic Cell and Module Models with Metaheuristic Algorithms: A Review
    Gu, Zaiyu
    Xiong, Guojiang
    Fu, Xiaofan
    SUSTAINABILITY, 2023, 15 (04)
  • [29] Supply demand optimization algorithm for parameter extraction of various solar cell models
    Ginidi, Ahmed R.
    Shaheen, Abdullah M.
    El-Sehiemy, Ragab A.
    Elattar, Ehab
    ENERGY REPORTS, 2021, 7 : 5772 - 5794
  • [30] A population diversity-controlled differential evolution for parameter estimation of solar photovoltaic models
    Yu, Yang
    Wang, Kaiyu
    Zhang, Tengfei
    Wang, Yirui
    Peng, Chen
    Gao, Shangce
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 51