THE ENERGY SPACES OF THE TANGENT POINT ENERGIES

被引:14
作者
Blatt, Simon [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Anal, D-76128 Karlsruhe, Germany
关键词
Repulsive energies; fractional Sobolev spaces;
D O I
10.1142/S1793525313500131
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we will give a necessary and sufficient condition under which the tangent point energies introduced by von der Mosel and Strzelecki in [J. Geom. Anal., pp. 1-55 (2011), J. Knot Theory Ramifications 21 (2012) 1250044] are bounded. We show that an admissible submanifold has bounded E-q-energy if and only if it is injective and locally agrees with the graph of functions that belong to Sobolev-Slobodeckij space W-2-m/q,W-q. The known Morrey embedding theorems of von der Mosel and Strzelecki can then be interpreted as standard Morrey embedding theorems for these spaces. Especially, this shows that the Holder exponents for the embeddings in [J. Geom. Anal., pp. 1-55 (2011)] are sharp.
引用
收藏
页码:261 / 270
页数:10
相关论文
共 6 条
[1]  
Adams R.A., 1975, Sobolev Spaces. Adams. Pure and applied mathematics
[2]   BOUNDEDNESS AND REGULARIZING EFFECTS OF O'HARA'S KNOT ENERGIES [J].
Blatt, Simon .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2012, 21 (01)
[3]  
Lawson C. L., 1995, SOLVING LEAST SQUARE, DOI [DOI 10.1137/1.9781611971217, 10.1137/1.9781611971217]
[4]   Tangent-Point Repulsive Potentials for a Class of Non-smooth m-dimensional Sets in a"e n . Part I: Smoothing and Self-avoidance Effects [J].
Strzelecki, Pawel ;
von der Mosel, Heiko .
JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (03) :1085-1139
[5]   TANGENT-POINT SELF-AVOIDANCE ENERGIES FOR CURVES [J].
Strzelecki, Pawel ;
Von der Mosel, Heiko .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2012, 21 (05)
[6]  
Tartar L., 2007, LECT NOTES UNIONE MA, V3