Sixth-order symmetric and symplectic exponentially fitted Runge-Kutta methods of the Gauss type

被引:88
作者
Calvo, M. [1 ]
Franco, J. M. [1 ]
Montijano, J. I. [1 ]
Randez, L. [1 ]
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, IUMA, E-50009 Zaragoza, Spain
关键词
Exponential fitting; Symplectieness; RK methods; Oscillatory Hamiltonian systems; NUMERICAL-INTEGRATION;
D O I
10.1016/j.cam.2008.01.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The construction of exponentially fitted Runge-Kutta (EFRK) methods for the numerical integration of Hamiltonian systems with oscillatory solutions is considered. Based on the symplecticness, symmetry, and exponential fitting properties, two new three-stage RK integrators of the Gauss type with fixed or variable nodes, are obtained. The new exponentially fitted RK Gauss type methods integrate exactly differential systems whose solutions can be expressed as linear combinations of the set of functions {exp(A lambda t).exp(-lambda t)}, lambda is an element of C, and in particular {sin(omega t), cost(omega t)} when lambda = i omega, omega is an element of R. The algebraic order of the new integrators is also analyzed, obtaining that they are of sixth-order like the classical three-stage RK Gauss method. Some numerical experiments show that the new methods are more efficents than the symplectic RK Gauss methods (either standard or else exponentially fitted) proposed in the scientific literature. (C) 2008 Elsevier B. V. All rights reserved.
引用
收藏
页码:387 / 398
页数:12
相关论文
共 50 条
  • [21] Optimal implicit exponentially-fitted Runge-Kutta methods
    Vanden Berghe, G
    Ixaru, LG
    Van Daele, M
    COMPUTER PHYSICS COMMUNICATIONS, 2001, 140 (03) : 346 - 357
  • [22] Exponentially-fitted pseudo Runge-Kutta method
    Tiwari, Shruti
    Pandey, Ram K.
    INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2020, 12 (02) : 105 - 116
  • [23] New embedded explicit pairs of exponentially fitted Runge-Kutta methods
    Paris, A.
    Randez, L.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (03) : 767 - 776
  • [24] Three sixth-order explicit symplectic Runge-Kutta-Nystrom methods with exact parameters
    Pan, Mengjiao
    Zhang, Jingjing
    Zhang, Shangyou
    RESULTS IN APPLIED MATHEMATICS, 2025, 26
  • [25] A class of implicit symmetric symplectic and exponentially fitted Runge-Kutta-Nystrom methods for solving oscillatory problems
    Zhai, Huai Yuan
    Zhai, Wen Juan
    Chen, Bing Zhen
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [26] On the generation of P-stable exponentially fitted Runge-Kutta-Nystrom methods by exponentially fitted Runge-Kutta methods (vol 200, pg 778, 2007)
    Van de Vyver, Hans
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 200 (02) : 778 - 779
  • [27] Diagonally Implicit Exponentially Fitted Runge-Kutta Methods with Equation Dependent Coefficients
    D'Ambrosio, R.
    Paternoster, B.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1185 - 1188
  • [28] EXPONENTIALLY FITTED TWO-DERIVATIVE RUNGE-KUTTA METHODS FOR THE SCHRODINGER EQUATION
    Fang, Yonglei
    You, Xiong
    Ming, Qinghe
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2013, 24 (10):
  • [29] TWO NEW PHASE-FITTED SYMPLECTIC PARTITIONED RUNGE-KUTTA METHODS
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2011, 22 (12): : 1343 - 1355
  • [30] Exponentially fitted two-step Runge-Kutta methods: Construction and parameter selection
    D'Ambrosio, R.
    Esposito, E.
    Paternoster, B.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (14) : 7468 - 7480