Advances in proton-exchange membranes for fuel cells: an overview on proton conductive channels (PCCs)

被引:161
作者
Wu, Liang [1 ]
Zhang, Zhenghui [1 ]
Ran, Jin [1 ]
Zhou, Dan [1 ]
Li, Chuanrun [1 ]
Xu, Tongwen [1 ]
机构
[1] Univ Sci & Technol China, Sch Chem & Mat Sci, Lab Funct Membranes, CAS Key Lab Soft Matter Chem, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
POLYMER ELECTROLYTE MEMBRANES; POLY(ARYLENE ETHER SULFONE)S; SULFONATED POLY(PHENYLENE OXIDE); HYBRID THIN-FILMS; MULTIBLOCK COPOLYMERS; TRANSPORT-PROPERTIES; IONOMER MEMBRANES; BLOCK-COPOLYMER; SIDE-CHAINS; PERFLUOROSULFONATE IONOMERS;
D O I
10.1039/c3cp50296a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Proton-exchange membranes (PEM) display unique ion-selective transport that has enabled a breakthrough in high-performance proton-exchange membrane fuel cells (PEMFCs). Elemental understanding of the morphology and proton transport mechanisms of the commercially available Nafion (R) has promoted a majority of researchers to tune proton conductive channels (PCCs). Specifically, knowledge of the morphology-property relationship gained from statistical and segmented copolymer PEMs has highlighted the importance of the alignment of PCCs. Furthermore, increasing efforts in fabricating and aligning artificial PCCs in field-aligned copolymer PEMs, nanofiber composite PEMs and mesoporous PEMs have set new paradigms for improvement of membrane performances. This perspective profiles the recent development of the channels, from the self-assembled to the artificial, with a particular emphasis on their formation and alignment. It concludes with an outlook on benefits of highly aligned PCCs for fuel cell operation, and gives further direction to develop new PEMs from a practical point of view.
引用
收藏
页码:4870 / 4887
页数:18
相关论文
共 116 条
[1]   THE GROTTHUSS MECHANISM [J].
AGMON, N .
CHEMICAL PHYSICS LETTERS, 1995, 244 (5-6) :456-462
[2]   Spatial distribution and dynamics of proton conductivity in fuel cell membranes: potential and limitations of electrochemical atomic force microscopy measurements [J].
Aleksandrova, E. ;
Hink, S. ;
Hiesgen, R. ;
Roduner, E. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (23)
[3]   Ordered mesoporous hybrid thin films with double organic functionality and mixed oxide framework [J].
Angelomé, PC ;
Soler-Illia, GJDA .
JOURNAL OF MATERIALS CHEMISTRY, 2005, 15 (35-36) :3903-3912
[4]  
Appleby A.J., 1989, FUEL CELL HDB
[5]   Sulfonated block polyimide copolymers as a proton-conductive membrane [J].
Asano, N ;
Miyatake, K ;
Watanabe, M .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2006, 44 (08) :2744-2748
[6]   Molecular Optimization of Multiply-Functionalized Mesoporous Films with Ion Conduction Properties [J].
Athens, George L. ;
Kim, Donghun ;
Epping, Jan D. ;
Cadars, Sylvian ;
Ein-Eli, Yair ;
Chmelka, Bradley F. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (40) :16023-16036
[7]   Fundamental investigations of the effect of the linkage group on the behavior of hydrophilic-hydrophobic poly(arylene ether sulfone) multiblock copolymers for proton exchange membrane fuel cells [J].
Badami, Anand S. ;
Lane, Ozma ;
Lee, Hae-Seung ;
Roy, Abhishek ;
McGrath, James E. .
JOURNAL OF MEMBRANE SCIENCE, 2009, 333 (1-2) :1-11
[8]   Sulfonated Poly(arylene ether sulfone ketone) Multiblock Copolymers with Highly Sulfonated Block. Synthesis and Properties [J].
Bae, Byungchan ;
Miyatake, Kenji ;
Watanabe, Masahiro .
MACROMOLECULES, 2010, 43 (06) :2684-2691
[9]   Block copolymers - Designer soft materials [J].
Bates, FS ;
Fredrickson, GH .
PHYSICS TODAY, 1999, 52 (02) :32-38
[10]   Nanoscale current imaging of the conducting channels in proton exchange membrane fuel cells [J].
Bussian, David A. ;
O'Dea, James R. ;
Metiu, Horia ;
Buratto, Steven K. .
NANO LETTERS, 2007, 7 (02) :227-232