Fluorescent Nanosensors Based on Fluorescence Resonance Energy Transfer (FRET)

被引:224
|
作者
Chen, Gengwen [1 ]
Song, Fengling [1 ]
Xiong, Xiaoqing [1 ]
Peng, Xiaojun [1 ]
机构
[1] Dalian Univ Technol, State Key Lab Fine Chem, Dalian 116024, Peoples R China
关键词
SEMICONDUCTOR QUANTUM DOTS; NANOPARTICLE BASED FRET; SILICA NANOPARTICLES; GOLD NANOPARTICLES; MERCURY IONS; NANO-FLARES; IN-VIVO; RATIOMETRIC SENSOR; ORGANIC-DYE; PROBES;
D O I
10.1021/ie303485n
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Fluorescence resonance energy transfer (FRET) has been widely used as a spectroscopic technique in various areas such as structural elucidation of biological molecules and their interactions, in vitro assays, in vivo monitoring in cellular research, nucleic acid analysis, signal transduction, light harvesting, and metallic nanomaterials. Meanwhile, based on the mechanism of FRET, a series of FRET nanomaterials systems have been recently developed as novel chemical sensors and biosensors. Compared with those based on small molecules traditional FRET systems, the surface chemistry of nanomaterial has encouraged the development of multiple probes based on linked recognition molecules such as peptides, nucleic acids, or small-molecule ligands. This critical review highlights the design and the applications of sensitive and selective ratiometric nanoprobes based on FRET. We focus on the benefits and limitations of nano-FRET systems and their applications as chemical sensors and biosensors.
引用
收藏
页码:11228 / 11245
页数:18
相关论文
共 50 条
  • [1] Fluorescence-resonance energy transfer(FRET) within the fluorescent metallacycles
    Qinghui Ling
    Tanyu Cheng
    Shaoying Tan
    Junhai Huang
    Lin Xu
    ChineseChemicalLetters, 2020, 31 (11) : 2884 - 2890
  • [2] Fluorescence-resonance energy transfer (FRET) within the fluorescent metallacycles
    Ling, Qinghui
    Cheng, Tanyu
    Tan, Shaoying
    Huang, Junhai
    Xu, Lin
    CHINESE CHEMICAL LETTERS, 2020, 31 (11) : 2884 - 2890
  • [3] Advances in Spiropyrans/Spirooxazines and Applications Based on Fluorescence Resonance Energy Transfer (FRET) with Fluorescent Materials
    Xia, Hongyan
    Xie, Kang
    Zou, Gang
    MOLECULES, 2017, 22 (12):
  • [4] Fluorescent proteins and fluorescence resonance energy transfer (FRET) as tools in signaling research
    Schmid, Johannes A.
    Birbach, Andreas
    THROMBOSIS AND HAEMOSTASIS, 2007, 97 (03) : 378 - 384
  • [5] Fluorescence resonance energy transfer (FRET) using ssDNA binding fluorescent dye
    Orpana, KA
    BIOMOLECULAR ENGINEERING, 2004, 21 (02): : 45 - 50
  • [6] Fluorescence resonance energy transfer (FRET) as biomarkers
    Paul, Ripa
    Suklabaidya, Sudip
    Hussain, Syed Arshad
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 6301 - 6303
  • [7] Gauging the flexibility of fluorescent markers for an accurate interpretation of fluorescence resonance energy transfer (FRET)
    Rindermann, Jan Junis
    Akhtman, Yosef
    Richardson, James
    Brown, Tom
    Lagoudakis, Pavlos G.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [8] Nanoparticle based fluorescence resonance energy transfer (FRET) for biosensing applications
    Shi, Jingyu
    Tian, Feng
    Lyu, Jing
    Yang, Mo
    JOURNAL OF MATERIALS CHEMISTRY B, 2015, 3 (35) : 6989 - 7005
  • [9] Fluorescence resonance energy transfer (FRET): theory and experiments
    Chirio-Lebrun, MC
    Prats, M
    BIOCHEMICAL EDUCATION, 1998, 26 (04): : 320 - 323
  • [10] Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application
    Stanisavljevic, Maja
    Krizkova, Sona
    Vaculovicova, Marketa
    Kizek, Rene
    Adam, Vojtech
    BIOSENSORS & BIOELECTRONICS, 2015, 74 : 562 - 574