Assessment of Rating Prediction Techniques under Response Uncertainty

被引:1
作者
Sizov, Sergej [1 ]
机构
[1] Heinrich Heine Univ Dusseldorf, Fac Arts & Humanities, Web Sci Grp, D-40225 Dusseldorf, Germany
来源
PROCEEDINGS OF THE 2016 ACM WEB SCIENCE CONFERENCE (WEBSCI'16) | 2016年
关键词
RMSE; uncertainty; collaborative filtering; recommender systems; ordinal data;
D O I
10.1145/2908131.2908203
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An objective assessment of collaborative filtering techniques and recommender systems requires application of suitable predictive accuracy metrics. In real life, individuals meet their decisions with considerable uncertainty. We accordingly justify underlying assumptions of quality assessment and propose and appropriate uncertainty-aware evaluation methodology for rating predictions.
引用
收藏
页码:363 / 364
页数:2
相关论文
共 3 条
[1]   Evaluating collaborative filtering recommender systems [J].
Herlocker, JL ;
Konstan, JA ;
Terveen, K ;
Riedl, JT .
ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2004, 22 (01) :5-53
[2]  
Said Alan, 2012, User Modeling, Adaptation, and Personalization. Proceedings 20th International Conference, UMAP 2012, P237, DOI 10.1007/978-3-642-31454-4_20
[3]  
Su X., 2009, ADV ARTIF INTELL, DOI DOI 10.1155/2009/421425