Structural and electrochemical properties of Mg-doped nickel based cathode materials LiNi0.6Co0.2Mn0.2-xMgxO2 for lithium ion batteries

被引:50
作者
Huang, Zhenjun [1 ]
Wang, Zhixing [1 ]
Zheng, Xiaobo [1 ]
Guo, Huajun [1 ]
Li, Xinhai [1 ]
Jing, Qun [2 ,3 ]
Yang, Zhihua [2 ]
机构
[1] Cent S Univ, Sch Met & Environm, Changsha 410083, Hunan, Peoples R China
[2] Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Xinjiang Key Lab Elect Informat Mat & Devices, Key Lab Funct Mat & Devices Special Environm, Urumqi 830011, Peoples R China
[3] Shihezi Univ, Sch Sci, Dept Phys, Shihezi 832000, Peoples R China
来源
RSC ADVANCES | 2015年 / 5卷 / 108期
关键词
POSITIVE ELECTRODE MATERIALS; THERMAL-PROPERTIES; PERFORMANCE; DIFFUSION; AL;
D O I
10.1039/c5ra16633k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Layered LiNi0.6Co0.2Mn0.2-xMgxO2 (x = 0, 0.01, 0.03, 0.05) samples have been prepared by co-precipitation and high-temperature solid state methods. The influence of the Mg dopant on its chemical component, crystal structure, surface valence states, electrochemical properties, and Li+ diffusion barrier has been studied. Rietveld refinements confirm that when Mg was substituted for Mn in LiNi0.6Co0.2Mn0.2O2, the cation mixing decreased, the lattice parameters a, c and interslab space thickness decreased, while the c/a ratio increased. Electrochemical testing confirms that the initial coulombic efficiency and cycling stability increase by the substitution of Mg for Mn, and electrochemical polarization decreases. First-principles calculations show that the improvement of rate capability may be attributed to less cation mixing.
引用
收藏
页码:88773 / 88779
页数:7
相关论文
共 34 条
[1]   Divalent cation incorporated Li(1+x)MMgxO2(1+x) (M = Ni0.75Co0.25):: viable cathode materials for rechargeable lithium-ion batteries [J].
Chang, CC ;
Kim, JY ;
Kumta, PN .
JOURNAL OF POWER SOURCES, 2000, 89 (01) :56-63
[2]   LiNi0.74Co0.26-xMgxO2 cathode material for a Li-ion cell [J].
Cho, J .
CHEMISTRY OF MATERIALS, 2000, 12 (10) :3089-3094
[3]   A New Type of Protective Surface Layer for High-Capacity Ni-Based Cathode Materials: Nanoscaled Surface Pillaring Layer [J].
Cho, Yonghyun ;
Oh, Pilgun ;
Cho, Jaephil .
NANO LETTERS, 2013, 13 (03) :1145-1152
[4]   First principles methods using CASTEP [J].
Clark, SJ ;
Segall, MD ;
Pickard, CJ ;
Hasnip, PJ ;
Probert, MJ ;
Refson, K ;
Payne, MC .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2005, 220 (5-6) :567-570
[5]  
Dean J, 1990, MAT MANUF PROCESSES, V5, P687
[6]   Multiscale modelling and numerical simulation of rechargeable lithium ion batteries: concepts, methods and challenges [J].
Franco, Alejandro A. .
RSC ADVANCES, 2013, 3 (32) :13027-13058
[7]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176
[8]  
Huang YH, 2013, INT J ELECTROCHEM SC, V8, P8005
[9]   Factors that affect Li mobility in layered lithium transition metal oxides [J].
Kang, Kisuk ;
Ceder, Gerbrand .
PHYSICAL REVIEW B, 2006, 74 (09)
[10]   Synthesis of spherical Li[Ni(1/3-z)CO(1/3-z)Mn(1/3-z)Mgz]O2 as positive electrode material for lithium-ion battery [J].
Kim, GH ;
Myung, ST ;
Kim, HS ;
Sun, YK .
ELECTROCHIMICA ACTA, 2006, 51 (12) :2447-2453