Light Control with Liquid Crystalline Elastomers

被引:126
作者
Brannum, Michelle T. [1 ,2 ]
Steele, Aubrey M. [1 ,3 ]
Venetos, Maxwell C. [1 ,3 ]
Korley, LaShanda T. J. [2 ,4 ,5 ]
Wnek, Gary E. [2 ]
White, Timothy J. [1 ,6 ]
机构
[1] Air Force Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA
[2] Case Western Reserve Univ, Dept Macromol Sci & Engn, Cleveland, OH 44106 USA
[3] Azimuth Corp, Beavercreek, OH 45431 USA
[4] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA
[5] Univ Delaware, Dept Chem & Biomol Engn, Newark, DE 19716 USA
[6] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA
关键词
bioinspired; liquid crystals; shape transformation; CEPHALOPOD COLORATION MODEL; POLYMER NETWORKS; CAMOUFLAGE; SURFACES; SYSTEMS;
D O I
10.1002/adom.201801683
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The facile synthesis of well-aligned, main-chain liquid crystalline elastomers that retain the cholesteric phase (CLCEs) is reported. The selective reflection inherent to this phase is thermally tuned more than 200 nm in these solid films, across the visible spectrum. The optical response is directly correlated to thermomechanical expansion of the CLCE film thickness. The bandwidth of the selective reflection of the CLCEs is increased to more than 200 nm by the incorporation of photosensitive chiral dopants that introduce heterogeneity in the pitch distribution. The mirror-like reflection of this CLCE film is also thermochromic, shifting from the visible to infrared. Reminiscent of cephalopods, when combined with the mechanical deformation of voxelated nematic liquid crystal elastomer, the thermochromic response of the CLCE produces solid-state elements with concurrent variation of specular and diffuse reflectance. These results demonstrate distinctive potential opportunities for liquid crystal elastomers to control light enabling new application in textiles, optics, and architecture.
引用
收藏
页数:7
相关论文
共 52 条
[1]  
[Anonymous], 1997, Introduction to Liquid Crystals
[2]   Enabling and Localizing Omnidirectional Nonlinear Deformation in Liquid Crystalline Elastomers [J].
Auguste, Anesia D. ;
Ward, Jeremy W. ;
Hardin, James O. ;
Kowalski, Benjamin A. ;
Guin, Tyler C. ;
Berrigan, J. Daniel ;
White, Timothy J. .
ADVANCED MATERIALS, 2018, 30 (35)
[3]   Variation of the network anisotropy of cholesteric side chain elastomers [J].
Bourgerette, Christian ;
Chen, Bin ;
Finkelmann, Heino ;
Mitov, Michel ;
Schmidtke, Jurgen ;
Stille, Werner .
MACROMOLECULES, 2006, 39 (23) :8163-8170
[4]   WIDE-BAND REFLECTIVE POLARIZERS FROM CHOLESTERIC POLYMER NETWORKS WITH A PITCH GRADIENT [J].
BROER, DJ ;
LUB, J ;
MOL, GN .
NATURE, 1995, 378 (6556) :467-469
[5]   BILAYER STRUCTURES IN CHOLESTERIC, CYCLIC-SILOXANE LIQUID-CRYSTALS [J].
BUNNING, TJ ;
KLEI, HE ;
SAMULSKI, ET ;
CRANE, RL ;
LINVILLE, RJ .
LIQUID CRYSTALS, 1991, 10 (04) :445-456
[6]  
Feng W., 2018, P SOC PHOTO-OPT INS, V10555
[7]  
Finkelmann H, 2001, ADV MATER, V13, P1069, DOI 10.1002/1521-4095(200107)13:14<1069::AID-ADMA1069>3.0.CO
[8]  
2-6
[9]   Electrical Actuation of Cholesteric Liquid Crystal Gels [J].
Fuchigami, Yuuta ;
Takigawa, Toshikazu ;
Urayama, Kenji .
ACS MACRO LETTERS, 2014, 3 (08) :813-818
[10]   Synthesis of Elastomeric Liquid Crystalline Polymer Networks via Chain Transfer [J].
Godman, Nicholas P. ;
Kowalski, Benjamin A. ;
Auguste, Anesia D. ;
Koerner, Hilmar ;
White, Timothy J. .
ACS MACRO LETTERS, 2017, 6 (11) :1290-1295