BIFURCATIONS AND EXACT TRAVELING WAVE SOLUTIONS OF THE GENERALIZED TWO-COMPONENT CAMASSA-HOLM EQUATION

被引:20
作者
Li, Jibin [1 ]
Qiao, Zhijun [2 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] Univ Texas Pan Amer, Dept Math, Edinburg, TX 78541 USA
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2012年 / 22卷 / 12期
基金
中国国家自然科学基金;
关键词
Generalized two-component Camassa-Holm equation; solitary wave; cusp wave; periodic wave solution; kink wave solution; breaking wave solution; SOLITONS;
D O I
10.1142/S0218127412503051
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we apply the method of dynamical systems to a generalized two-component Camassa-Holm system. Through analysis, we obtain solitary wave solutions, kink and anti-kink wave solutions, cusp wave solutions, breaking wave solutions, and smooth and nonsmooth periodic wave solutions. To guarantee the existence of these solutions, we give constraint conditions among the parameters associated with the generalized Camassa-Holm system. Choosing some special parameters, we obtain exact parametric representations of the traveling wave solutions.
引用
收藏
页数:13
相关论文
共 14 条
[1]  
Byrd P.F., 1971, HDB ELLIPTIC INTEGRA
[2]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[3]  
Camassa R., 1994, Advances in Applied Mechanics, V31, P1
[4]   A two-component generalization of the Camassa-Holm equation and its solutions [J].
Chen, M ;
Liu, SQ ;
Zhang, YJ .
LETTERS IN MATHEMATICAL PHYSICS, 2006, 75 (01) :1-15
[5]   Stability of Solitary Waves and Global Existence of a Generalized Two-Component Camassa-Holm System [J].
Chen, Robin Ming ;
Liu, Yue ;
Qiao, Zhijun .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (12) :2162-2188
[6]  
Li J., 2007, STUDY SINGULAR NONLI
[7]   Bifurcations of travelling wave solutions for a two-component Camassa-Holm equation [J].
Li, Ji Bin ;
Li, Yi Shen .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (08) :1319-1330
[8]   On a class of singular nonlinear traveling wave equations [J].
Li, Jibin ;
Chen, Guanrong .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (11) :4049-4065
[9]   Traveling waves for an integrable higher order KdV type wave equations [J].
Li, Jibin ;
Wu, Jianhong ;
Zhu, Huaiping .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (08) :2235-2260
[10]   Bifurcations of traveling wave solutions for an integrable equation [J].
Li, Jibin ;
Qiao, Zhijun .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (04)