Lie ideals of graded associative algebras

被引:4
作者
Bierwirth, Hannes [1 ]
Siles Molina, Mercedes [1 ]
机构
[1] Univ Malaga, Dept Algebra Geometria & Topol, E-29071 Malaga, Spain
关键词
QUOTIENTS; RING;
D O I
10.1007/s11856-011-0201-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Lie structure of graded associative algebras. Essentially, we analyze the relation between Lie and associative graded ideals, and between Lie and associative graded derivations. Gathering together results on both directions, we compute maximal graded algebras of quotients of graded Lie algebras that arise from associative algebras. We also show that the Lie algebra Der (gr) (A) of graded derivations of a graded semiprime associative algebra is strongly non-degenerate (modulo a certain ideal containing the center of Der (gr) (A)).
引用
收藏
页码:111 / 136
页数:26
相关论文
共 11 条
[2]   Computing the maximal algebra of quotients of a Lie algebra [J].
Bresar, Matej ;
Perera, Francesc ;
Sanchez Ortega, Juana ;
Siles Molina, Mercedes .
FORUM MATHEMATICUM, 2009, 21 (04) :601-620
[3]  
FONTANALS CD, 2004, J ALGEBRA, V280, P635
[4]   ON LIE STRUCTURE OF AN ASSOCIATIVE RING [J].
HERSTEIN, IN .
JOURNAL OF ALGEBRA, 1970, 14 (04) :561-&
[5]  
HERSTEIN IN, 1969, TOPICS RING THEORY
[6]  
MCCRIMMON K, 1989, ALGEBRAS GROUPS GEOM, V6, P153
[7]   Algebras of quotients of Lie algebras [J].
Molina, MS .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 188 (1-3) :175-188
[8]   COMPUTING THE SYMMETRICAL RING OF QUOTIENTS [J].
PASSMAN, DS .
JOURNAL OF ALGEBRA, 1987, 105 (01) :207-235
[9]   Strongly non-degenerate Lie algebras [J].
Perera, Francesc ;
Molina, Mercedes Siles .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (12) :4115-4124
[10]   The maximal graded left quotient algebra of a graded algebra [J].
Pino, GA ;
Molina, MS .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (01) :261-270