Limit theorems for occupation time fluctuations of branching systems I: Long-range dependence

被引:61
作者
Bojdecki, T
Gorostiza, LG
Talarczyk, A
机构
[1] Ctr Invest & Estudios Avanzados, Dept Math, Mexico City 07000, DF, Mexico
[2] Warsaw Univ, Inst Math, PL-02097 Warsaw, Poland
基金
加拿大自然科学与工程研究理事会;
关键词
functional limit theorem; occupation time fluctuation; branching particle system; distribution-valued Gaussian process; fractional Brownian motion; SUb-fractional Brownian motion; long-range dependence;
D O I
10.1016/j.spa.2005.07.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We give a functional limit theorem for the fluctuations of the resealed occupation time process of a critical branching particle system in R-d with symmetric alpha-stable motion and alpha < d < 2 alpha, which leads to a long-range dependence process involving sub-fractional Brownian motion. We also give an analogous result for the system without branching and d <alpha, which involves fractional Brownian motion. We use a space-time random field approach. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 21 条
[1]  
[Anonymous], 1993, ECOLE DETE PROBABILI
[2]  
[Anonymous], 2003, Contemporary Mathematics
[3]  
BILLINGSLEY P., 1999, Convergence of Probability Measures, V2nd, DOI 10.1002/9780470316962
[4]  
BIRKNER M, 2005, 1011 WEIERSTR I ANG
[5]   CONVERGENCE OF L'-VALUED PROCESSES AND SPACE-TIME RANDOM-FIELDS [J].
BOJDECKI, T ;
GOROSTIZA, LG ;
RAMASWAMY, S .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 66 (01) :21-41
[6]   Sub-fractional Brownian motion and its relation to occupation times [J].
Bojdecki, T ;
Gorostiza, LG ;
Talarczyk, A .
STATISTICS & PROBABILITY LETTERS, 2004, 69 (04) :405-419
[7]   LANGEVIN-EQUATIONS FOR L'-VALUED GAUSSIAN-PROCESSES AND FLUCTUATION LIMITS OF INFINITE PARTICLE-SYSTEMS [J].
BOJDECKI, T ;
GOROSTIZA, LG .
PROBABILITY THEORY AND RELATED FIELDS, 1986, 73 (02) :227-244
[8]   Self-intersection local time for S′(Rd)-Wiener processes and related Ornstein-Uhlenbeck processes [J].
Bojdecki, T ;
Gorostiza, LG .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 1999, 2 (04) :569-615
[9]  
BOJDECKI T, 2005, IN PRESS STOCHASTIC, DOI DOI 10.1016/J.SPA.2005.07.004
[10]  
Dawson D A., 1999, Math. Surveys Monogr, V64, P45, DOI [10.1090/surv/064/02, DOI 10.1090/SURV/064/02]