MRE-binding transcription factor-1: Weak zinc-binding finger domains 5 and 6 modulate the structure, affinity, and specificity of the metal-response element complex

被引:92
作者
Chen, XH [1 ]
Chu, MH [1 ]
Giedroc, DP [1 ]
机构
[1] Texas A&M Univ, Ctr Macromol Design, Dept Biochem & Biophys, College Stn, TX 77843 USA
关键词
D O I
10.1021/bi9913000
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
MRE-binding transcription factor-1 (MTF-1) contains six Cys(2)-His(2) zinc finger sequences, and it has been suggested that the zinc finger domain itself may function as a zinc sensor in zinc-activated expression of metallothioneins (MTs). Previous work has shown that a subset (approximate to 3-4) of the zinc fingers in MTF-zf play a structural role in folding and high-affinity metal-response element (MREd) binding, while one or more other fingers have properties consistent with a metalloregulatory role (weak zinc binding affinity in the absence of DNA). We show here that zinc fingers 5 and 6 correspond to the weak zinc-binding fingers in MTF-zf. Limited trypsinolysis of a Zn-6-MTF-zf:MREd complex gives rise to a highly protease-resistant core fragment corresponding to amino acids 137-260 or N-terminal zinc fingers 1-4 of MTF-zf. Characterization of a collection of broken-finger (His --> Asn) and missing-finger mutants of MTF-zf reveals that deletion of zinc fingers 5 and 6 to create MTF-zf14 attenuates MREd binding affinity (approximate to 20-fold), while deletion of fingers 4-6 (MTF-zf13) results in a further 20-fold reduction of binding affinity with a nearly complete loss of specificity. Circular dichroism studies reveal that the binding of MTF-zf to the MREd induces a dramatic alteration of the structure of the MREd from a B-form to a double-helical conformation with A-like features. Formation of stoichiometric complexes with MTF-2f14, H279N (Delta zf5) MTF-zf, and MTF-zf13 induces comparatively less A-like structure. Steady-state fluorescence resonance energy transfer (FRET) spectroscopy has been used to globally define the orientation of the multifinger MTF-zf on the MREd. These experiments suggest that fingers 1-4 are oriented on the highly conserved TGCRCnC side of the MREd with fingers 5-6 bound at or near the gGCCc sequence. These findings are consistent with a model in which the N-terminal zinc fingers in MTF-zf are required for high affinity and specific binding to the consensus TGCRCnC core in a way which is subjected to structural and allosteric modulation by the weak zinc-binding C-terminal zinc fingers.
引用
收藏
页码:12915 / 12925
页数:11
相关论文
共 67 条
[1]  
ANSARI AZ, 1995, NATURE, V374, P371
[2]   The galvanization of biology: A growing appreciation for the roles of zinc [J].
Berg, JM ;
Shi, YG .
SCIENCE, 1996, 271 (5252) :1081-1085
[3]   The DNA binding activity of metal response element-binding transcription factor-1 is activated in vivo and in vitro by zinc, but not by other transition metals [J].
Bittel, D ;
Dalton, T ;
Samson, SLA ;
Gedamu, L ;
Andrews, GK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (12) :7127-7133
[4]   CLONING, CHROMOSOMAL MAPPING AND CHARACTERIZATION OF THE HUMAN METAL-REGULATORY TRANSCRIPTION FACTOR MTF-1 [J].
BRUGNERA, E ;
GEORGIEV, O ;
RADTKE, F ;
HEUCHEL, R ;
BAKER, E ;
SUTHERLAND, GR ;
SCHAFFNER, W .
NUCLEIC ACIDS RESEARCH, 1994, 22 (15) :3167-3173
[5]   Bacillus subtilis contains multiple Fur homologues:: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors [J].
Bsat, N ;
Herbig, A ;
Casillas-Martinez, L ;
Setlow, P ;
Helmann, JD .
MOLECULAR MICROBIOLOGY, 1998, 29 (01) :189-198
[6]   Structural and functional heterogeneity among the zinc fingers of human MRE-binding transcription factor-1 [J].
Chen, XH ;
Agarwal, A ;
Giedroc, DP .
BIOCHEMISTRY, 1998, 37 (32) :11152-11161
[7]   Cadmium-mediated activation of the metal response element in human neuroblastoma cells lacking functional metal response element-binding transcription factor-1 [J].
Chu, WA ;
Moehlenkamp, JD ;
Bittel, D ;
Andrews, GK ;
Johnson, JA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (09) :5279-5284
[8]   MOLECULAR-BASIS FOR SPECIFIC RECOGNITION OF BOTH RNA AND DNA BY A ZINC FINGER PROTEIN [J].
CLEMENS, KR ;
WOLF, V ;
MCBRYANT, SJ ;
ZHANG, PH ;
LIAO, XB ;
WRIGHT, PE ;
GOTTESFELD, JM .
SCIENCE, 1993, 260 (5107) :530-533
[9]   ZINC PROTEINS - ENZYMES, STORAGE PROTEINS, TRANSCRIPTION FACTORS, AND REPLICATION PROTEINS [J].
COLEMAN, JE .
ANNUAL REVIEW OF BIOCHEMISTRY, 1992, 61 :897-946
[10]   TRANSCRIPTIONAL INDUCTION OF THE MOUSE METALLOTHIONEIN-I GENE IN HYDROGEN PEROXIDE-TREATED HEPA CELLS INVOLVES A COMPOSITE MAJOR LATE TRANSCRIPTION FACTOR ANTIOXIDANT RESPONSE ELEMENT AND METAL RESPONSE PROMOTER ELEMENTS [J].
DALTON, T ;
PALMITER, RD ;
ANDREWS, GK .
NUCLEIC ACIDS RESEARCH, 1994, 22 (23) :5016-5023