On maximal operators on k-spheres in Zn

被引:3
作者
Avdispahic, M [1 ]
Smajlovic, L [1 ]
机构
[1] Univ Sarajevo, Dept Math, Sarajevo 71000, Bosnia & Herceg
关键词
maximal functions; Vinogradov's method;
D O I
10.1090/S0002-9939-06-08458-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A. Magyar's result on L-p-bounds for a family of operators on k-spheres ( k >= 3) in Z(n) is improved to match the corresponding theorem for 2-spheres.
引用
收藏
页码:2125 / 2130
页数:6
相关论文
共 9 条
[1]  
Hardy G.H., 1919, Q J MATH, V48, P272
[2]  
Hardy GH, 1918, P LOND MATH SOC, V17, P75
[3]  
KARATSUBA AA, 1977, MATEMATICHESKAYA ENT, V1
[4]   Discrete analogues in harmonic analysis: Spherical averages [J].
Magyar, A ;
Stein, EM ;
Wainger, S .
ANNALS OF MATHEMATICS, 2002, 155 (01) :189-208
[5]  
Magyar A, 1997, REV MAT IBEROAM, V13, P307
[6]  
NATHANSON MB, 1996, GTM, V164
[7]  
STECKHIN SB, 1980, P STEKLOV I MATH, V143, P201
[8]   MAXIMAL FUNCTIONS - SPHERICAL MEANS [J].
STEIN, EM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1976, 73 (07) :2174-2175
[9]  
VINOGRADOV IM, 1980, METOD TRIGONOMETRICH