Renormalization group for renormalization-group equations toward the universality classification of infinite-order phase transitions

被引:15
作者
Itoi, C [1 ]
Mukaida, H
机构
[1] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z1, Canada
[2] Saitama Med Coll, Dept Phys, Moroyama, Saitama 3500496, Japan
来源
PHYSICAL REVIEW E | 1999年 / 60卷 / 04期
关键词
D O I
10.1103/PhysRevE.60.3688
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We derive a renormalization group to calculate the nontrivial critical exponent of the divergent correlation length, thereby providing a universality classification of essential singularities in infinite-order phase transitions. This method thus resolves the vanishing scaling matrix problem. The exponent is obtained from the maximal eigenvalue of a scaling matrix in this renormalization group, as in the case of ordinary second-order phase transitions. We exhibit several nontrivial universality classes in infinite-order transitions different from the well known Berezinskii-Kosterlitz-Thouless transition. [S1063-651X(99)05010-2].
引用
收藏
页码:3688 / 3700
页数:13
相关论文
共 22 条
[1]   CRITICAL-BEHAVIOR OF SPIN-S HEISENBERG ANTIFERROMAGNETIC CHAINS - ANALYTIC AND NUMERICAL RESULTS [J].
AFFLECK, I ;
GEPNER, D ;
SCHULZ, HJ ;
ZIMAN, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (05) :511-529
[2]  
BEREZINSKII VL, 1971, ZH EKSP TEOR FIZ, V32, P493
[3]   RENORMALIZATION-GROUP AND THE GINZBURG-LANDAU EQUATION [J].
BRICMONT, J ;
KUPIAINEN, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 150 (01) :193-208
[4]   RENORMALIZATION-GROUP AND ASYMPTOTICS OF SOLUTIONS OF NONLINEAR PARABOLIC EQUATIONS [J].
BRICMONT, J ;
KUPIAINEN, A ;
LIN, G .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (06) :893-922
[5]  
BULGADAEV SA, 1998, HEPTH9808115
[6]  
CARDY JL, 1986, J PHYS A-MATH GEN, V19, P1093
[7]   CORRECTION [J].
CARDY, JL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (14) :5039-5039
[8]   Renormalization group and singular perturbations: Multiple scales, boundary layers, and reductive perturbation theory [J].
Chen, LY ;
Goldenfeld, N ;
Oono, Y .
PHYSICAL REVIEW E, 1996, 54 (01) :376-394
[9]   CURIOSITIES AT C=1 [J].
GINSPARG, P .
NUCLEAR PHYSICS B, 1988, 295 (02) :153-170
[10]  
GINSPERG P, 1989, FIELDS STRINGS CRITI