Topology optimization of piezoelectric actuators considering geometric nonlinearities

被引:0
作者
Cardoso, Eduardo Lenz [1 ]
Ono Fonseca, Jun Sergio [2 ]
机构
[1] UDESC, Dept Mech Engn, Joinville, Brazil
[2] Univ Fed Rio Grande do Sul, Dept Engn Mech, Porto Alegre, RS, Brazil
来源
IUTAM SYMPOSIUM ON TOPOLOGICAL DESIGN OPTIMIZATION OF STRUCTURES, MACHINES AND MATERIALS: STATUS AND PERSPECTIVES | 2006年 / 137卷
关键词
topology optimization; piezoelectric actuators; geometric nonlinearities;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This work shows a methodology for the optimum design of piezelectric actuators undergoing large deformations. An equilibrium formulation for the finite movement of a piezoelectric body is introduced, as well as its finite element discretization. The solution of the nonlinear finite element equations is acomplishied through a new coupled-field arc-length algorithm. The optimization consists in the maximization of the output displacements subject to volume and displacement constraints. Sensitivities are derived with respect to mechanical displacements and electric potentials. The Generalized Method of Moving Asymptotes (GMMA) is used for the solution of the optimization problem. The results obtained with the proposed formulation are shown and the influence of the geometric nonlinearities is discussed.
引用
收藏
页码:391 / +
页数:3
相关论文
共 50 条
[21]   2D topology optimization MATLAB codes for piezoelectric actuators and energy harvesters [J].
Abbas Homayouni-Amlashi ;
Thomas Schlinquer ;
Abdenbi Mohand-Ousaid ;
Micky Rakotondrabe .
Structural and Multidisciplinary Optimization, 2021, 63 :983-1014
[22]   Displacement amplifier mechanism for piezoelectric actuators design using SIMP topology optimization approach [J].
Schlinquer, Thomas ;
Mohand-Ousaid, Abdenbi ;
Rakotondrabe, Micky .
2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2018, :4305-4311
[23]   Topology optimization of structures with geometrical nonlinearities [J].
Gea, HC ;
Luo, JH .
COMPUTERS & STRUCTURES, 2001, 79 (20-21) :1977-1985
[24]   Topology optimization for prestressed cable-truss structure considering geometric nonlinearity [J].
Li, Xiangji ;
Zhu, Jihong ;
Wang, Jie ;
Zhang, Weihong .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2023, 66 (09)
[25]   Topology optimization for prestressed cable-truss structure considering geometric nonlinearity [J].
Xiangji Li ;
Jihong Zhu ;
Jie Wang ;
Weihong Zhang .
Structural and Multidisciplinary Optimization, 2023, 66
[26]   Topology optimization considering material and geometric uncertainties using stochastic collocation methods [J].
Lazarov, Boyan S. ;
Schevenels, Mattias ;
Sigmund, Ole .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2012, 46 (04) :597-612
[27]   Topology optimization considering material and geometric uncertainties using stochastic collocation methods [J].
Boyan S. Lazarov ;
Mattias Schevenels ;
Ole Sigmund .
Structural and Multidisciplinary Optimization, 2012, 46 :597-612
[28]   Systematic design of displacement-amplifying mechanism for piezoelectric stacked actuators using topology optimization [J].
Lau, GKK ;
Du, H ;
Lim, MK .
SMART STRUCTURES AND MATERIAL 2000: SMART STRUCTURES AND INTEGRATED SYSTEMS, 2000, 3985 :583-591
[29]   Optimization of switching amplifiers for piezoelectric actuators [J].
Chandrasekaran, S ;
Lindner, DK ;
Smith, RC .
SMART STRUCTURES AND MATERIAL 2000: INDUSTRIAL AND COMMERCIAL APPLICATIONS OF SMART STRUCTURES TECHNOLOGIES, 2000, 3991 :418-429
[30]   Topology optimization of piezoelectric nanostructures [J].
Nanthakumar, S. S. ;
Lahmer, Tom ;
Zhuang, Xiaoying ;
Park, Harold S. ;
Rabczuk, Timon .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2016, 94 :316-335