Computation of Electromagnetic Fields Scattered From Objects With Uncertain Shapes Using Multilevel Monte Carlo Method

被引:11
作者
Litvinenko, Alexander [1 ]
Yucel, Abdulkadir C. [2 ]
Bagci, Hakan [3 ]
Oppelstrup, Jesper [4 ]
Michielssen, Eric [5 ]
Tempone, Raul [3 ,6 ]
机构
[1] Rhein Westfal TH Aachen, D-52062 Aachen, Germany
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[3] King Abdullah Univ Sci & Technol, Strateg Res Initiat Uncertainty Quantificat Ctr, Div Comp Elect & Math Sci & Engn, Thuwal 23955, Saudi Arabia
[4] KTH Royal Inst Technol, Dept Math, S-11428 Stockholm, Sweden
[5] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[6] Rhein Westfal TH Aachen, D-52062 Aachen, Germany
关键词
Fast Fourier transform (FFT); fast multipole method (FMM); integral equation; multilevel Monte Carlo method (MLMC); numerical methods; uncertain geometry; uncertainty quantification; FAST-MULTIPOLE ALGORITHM; PROBABILISTIC COLLOCATION METHOD; EFFICIENT PARALLELIZATION; WAVE-PROPAGATION; ERROR ANALYSIS; ROUGH-SURFACE; ELLIPTIC PDES; SIMULATION; EQUATIONS; FMM;
D O I
10.1109/JMMCT.2019.2897490
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Computational tools for characterizing electromagnetic scattering from objects with uncertain shapes are needed in various applications ranging from remote sensing at microwave frequencies to Raman spectroscopy at optical frequencies. Often, such computational tools use the Monte Carlo (MC) method to sample a parametric space describing geometric uncertainties. For each sample, which corresponds to a realization of the geometry, a deterministic electromagnetic solver computes the scattered fields. However, for an accurate statistical characterization, the number of MC samples has to be large. In this paper, to address this challenge, the continuation multilevel Monte Carlo (CMLMC) method is used together with a surface integral equation solver. The CMLMC method optimally balances statistical errors due to sampling of the parametric space, and numerical errors due to the discretization of the geometry using a hierarchy of discretizations, from coarse to fine. The number of realizations of finer discretizations can be kept low, with most samples computed on coarser discretizations to minimize computational cost. Consequently, the total execution time is significantly reduced, in comparison to the standard MC scheme.
引用
收藏
页码:37 / 50
页数:14
相关论文
共 72 条
  • [51] Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates
    Talley, CE
    Jackson, JB
    Oubre, C
    Grady, NK
    Hollars, CW
    Lane, SM
    Huser, TR
    Nordlander, P
    Halas, NJ
    [J]. NANO LETTERS, 2005, 5 (08) : 1569 - 1574
  • [52] Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients
    Teckentrup, A. L.
    Scheichl, R.
    Giles, M. B.
    Ullmann, E.
    [J]. NUMERISCHE MATHEMATIK, 2013, 125 (03) : 569 - 600
  • [53] Scattering of electromagnetic waves from dense distributions of spheroidal particles based on Monte Carlo simulations
    Tsang, L
    Ding, KH
    Shih, SE
    Kong, JA
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1998, 15 (10): : 2660 - 2669
  • [54] Rough Surface and Volume Scattering of Soil Surfaces, Ocean Surfaces, Snow, and Vegetation Based on Numerical Maxwell Model of 3-D Simulations
    Tsang, Leung
    Liao, Tien-Hao
    Tan, Shurun
    Huang, Huanting
    Qiao, Tai
    Ding, Kung-Hau
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (11) : 4703 - 4720
  • [55] Electromagnetic Computation in Scattering of Electromagnetic Waves by Random Rough Surface and Dense Media in Microwave Remote Sensing of Land Surfaces
    Tsang, Leung
    Ding, Kung-Hau
    Huang, Shaowu
    Xu, Xiaolan
    [J]. PROCEEDINGS OF THE IEEE, 2013, 101 (02) : 255 - 279
  • [56] Monte Carlo simulation of electromagnetic scattering from two-dimensional random rough surfaces
    Wagner, RL
    Song, JM
    Chew, WC
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1997, 45 (02) : 235 - 245
  • [57] Massively parallel fast multipole method solutions of large electromagnetic scattering problems
    Waltz, Caleb
    Sertel, Kubilay
    Carr, Michael A.
    Usner, Brian C.
    Volakis, John L.
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2007, 55 (06) : 1810 - 1816
  • [58] Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates
    Wang, H
    Levin, CS
    Halas, NJ
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (43) : 14992 - 14993
  • [59] Uncertainty quantification of silicon photonic devices with correlated and non-Gaussian random parameters
    Weng, Tsui-Wei
    Zhang, Zheng
    Su, Zhan
    Marzouk, Youssef
    Melloni, Andrea
    Daniel, Luca
    [J]. OPTICS EXPRESS, 2015, 23 (04): : 4242 - 4254
  • [60] Stochastic collocation for device-level variability analysis in integrated photonics
    Xing, Yufei
    Spina, Domenico
    Li, Ang
    Dhaene, Tom
    Bogaerts, Wim
    [J]. PHOTONICS RESEARCH, 2016, 4 (02) : 93 - 100