Computation of Electromagnetic Fields Scattered From Objects With Uncertain Shapes Using Multilevel Monte Carlo Method

被引:11
作者
Litvinenko, Alexander [1 ]
Yucel, Abdulkadir C. [2 ]
Bagci, Hakan [3 ]
Oppelstrup, Jesper [4 ]
Michielssen, Eric [5 ]
Tempone, Raul [3 ,6 ]
机构
[1] Rhein Westfal TH Aachen, D-52062 Aachen, Germany
[2] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[3] King Abdullah Univ Sci & Technol, Strateg Res Initiat Uncertainty Quantificat Ctr, Div Comp Elect & Math Sci & Engn, Thuwal 23955, Saudi Arabia
[4] KTH Royal Inst Technol, Dept Math, S-11428 Stockholm, Sweden
[5] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[6] Rhein Westfal TH Aachen, D-52062 Aachen, Germany
关键词
Fast Fourier transform (FFT); fast multipole method (FMM); integral equation; multilevel Monte Carlo method (MLMC); numerical methods; uncertain geometry; uncertainty quantification; FAST-MULTIPOLE ALGORITHM; PROBABILISTIC COLLOCATION METHOD; EFFICIENT PARALLELIZATION; WAVE-PROPAGATION; ERROR ANALYSIS; ROUGH-SURFACE; ELLIPTIC PDES; SIMULATION; EQUATIONS; FMM;
D O I
10.1109/JMMCT.2019.2897490
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Computational tools for characterizing electromagnetic scattering from objects with uncertain shapes are needed in various applications ranging from remote sensing at microwave frequencies to Raman spectroscopy at optical frequencies. Often, such computational tools use the Monte Carlo (MC) method to sample a parametric space describing geometric uncertainties. For each sample, which corresponds to a realization of the geometry, a deterministic electromagnetic solver computes the scattered fields. However, for an accurate statistical characterization, the number of MC samples has to be large. In this paper, to address this challenge, the continuation multilevel Monte Carlo (CMLMC) method is used together with a surface integral equation solver. The CMLMC method optimally balances statistical errors due to sampling of the parametric space, and numerical errors due to the discretization of the geometry using a hierarchy of discretizations, from coarse to fine. The number of realizations of finer discretizations can be kept low, with most samples computed on coarser discretizations to minimize computational cost. Consequently, the total execution time is significantly reduced, in comparison to the standard MC scheme.
引用
收藏
页码:37 / 50
页数:14
相关论文
共 72 条
  • [1] [Anonymous], 2009, PAMM
  • [2] Application of Polynomial Chaos to Quantify Uncertainty in Deterministic Channel Models
    Austin, Andrew C. M.
    Sood, Neeraj
    Siu, Joseph
    Sarris, Costas D.
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2013, 61 (11) : 5754 - 5761
  • [3] A Fast Stroud-Based Collocation Method for Statistically Characterizing EMI/EMC Phenomena on Complex Platforms
    Bagci, Hakan
    Yucel, Abdulkadir C.
    Hesthaven, Jan S.
    Michielssen, Eric
    [J]. IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2009, 51 (02) : 301 - 311
  • [4] Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients
    Barth, Andrea
    Schwab, Christoph
    Zollinger, Nathaniel
    [J]. NUMERISCHE MATHEMATIK, 2011, 119 (01) : 123 - 161
  • [5] FINITE ELEMENT ERROR ANALYSIS OF ELLIPTIC PDES WITH RANDOM COEFFICIENTS AND ITS APPLICATION TO MULTILEVEL MONTE CARLO METHODS
    Charrier, J.
    Scheichl, R.
    Teckentrup, A. L.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (01) : 322 - 352
  • [6] Computational modeling of uncertainty in time-domain electromagnetics
    Chauviere, C.
    Hesthaven, J. S.
    Lurati, L.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (02) : 751 - 775
  • [7] Efficient computation of RCS from scatterers of uncertain shapes
    Chauviere, Cedric
    Hesthaven, Jan. S.
    Wilcox, Lucas. C.
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2007, 55 (05) : 1437 - 1448
  • [8] Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients
    Cliffe, K. A.
    Giles, M. B.
    Scheichl, R.
    Teckentrup, A. L.
    [J]. COMPUTING AND VISUALIZATION IN SCIENCE, 2011, 14 (01) : 3 - 15
  • [9] Coifman R., 1993, IEEE Antennas and Propagation Magazine, V35, P7, DOI 10.1109/74.250128
  • [10] A continuation multilevel Monte Carlo algorithm
    Collier, Nathan
    Haji-Ali, Abdul-Lateef
    Nobile, Fabio
    von Schwerin, Erik
    Tempone, Raul
    [J]. BIT NUMERICAL MATHEMATICS, 2015, 55 (02) : 399 - 432