FINITE GROUPS WITH SEMINORMAL OR ABNORMAL SYLOW SUBGROUPS

被引:1
作者
Monakhov, Victor [1 ]
Sokhor, Irina [2 ]
机构
[1] Francisk Skorina Gomel State Univ, Fac Math & Technol Programming, Sovetskaya Str 104, Gomel 246019, BELARUS
[2] Brest State AS Pushkin Univ, Phys & Math Dept, Kosmonavtov Blvd 21, Brest 224016, BELARUS
关键词
Finite group; Sylow subgroup; abnormal subgroup; seminormal subgroup;
D O I
10.22108/ijgt.2018.112602.1500
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group in which every Sylow subgroup is seminormal or abnormal. We prove that G has a Sylow tower. We establish that if a group has a maximal subgroup with Sylow subgroups under the same conditions, then this group is soluble.
引用
收藏
页码:139 / 142
页数:4
相关论文
共 11 条
[1]  
[Anonymous], 1988, J MATH
[2]  
Doerk K., 1992, Finite Soluble Groups
[3]   ON SEMINORMAL SUBGROUPS [J].
FOGUEL, T .
JOURNAL OF ALGEBRA, 1994, 165 (03) :633-635
[4]   Finite Groups with Seminormal Sylow Subgroups [J].
Guo, Wen Bin .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (10) :1751-1757
[5]  
HUPPERT B., 1967, ENDLICHE GRUPPEN
[6]   Finite groups with seminormal Schmidt subgroups [J].
Knyagina, V. N. ;
Monakhov, V. S. .
ALGEBRA AND LOGIC, 2007, 46 (04) :244-249
[7]  
Matos, 1997, HOKKAIDO MATH J, V26, P157, DOI [DOI 10.14492/hokmj/1351257811, 10.14492/hokmj/1351257811]
[8]   Finite groups with a seminormal Hall subgroup [J].
Monakhov, V. S. .
MATHEMATICAL NOTES, 2006, 80 (3-4) :542-549
[9]  
Podgornaya V. V., 2000, VESTSI AKAD NAVU FMN, V4, P22
[10]  
Vdovin E. P., 2009, SIB ADV MATH, V19, P24, DOI [10.3103/S1055134409010039, DOI 10.3103/S1055134409010039]