Extracellular Matrix Remodeling and Stiffening Modulate Tumor Phenotype and Treatment Response

被引:102
作者
Leight, Jennifer L. [1 ,2 ]
Drain, Allison P. [3 ]
Weaver, Valerie M. [4 ,5 ]
机构
[1] Ohio State Univ, Dept Biomed Engn, Columbus, OH 43210 USA
[2] Ohio State Univ, James Comprehens Canc Ctr, Columbus, OH 43210 USA
[3] Univ Calif San Francisco, Univ Calif Berkeley Univ Calif San Francisco Grad, Ctr Bioengn & Tissue Regenerat, Dept Surg, San Francisco, CA 94143 USA
[4] Univ Calif San Francisco, Eli & Edythe Broad Ctr Regenerat Med & Stem Cell, Dept Bioengn & Therapeut Sci, Ctr Bioengn & Tissue Regenerat,Dept Surg,Dept Ana, San Francisco, CA 94143 USA
[5] Univ Calif San Francisco, Helen Diller Comprehens Canc Ctr, San Francisco, CA 94143 USA
来源
ANNUAL REVIEW OF CANCER BIOLOGY, VOL 1 | 2017年 / 1卷
基金
美国国家卫生研究院;
关键词
extracellular matrix; remodeling; tissue stiffness; tumor microenvironment; cancer; GROWTH-FACTOR-BETA; CANCER-CELL; STEM-CELLS; LYSYL OXIDASE; TENASCIN-C; CAPILLARY MORPHOGENESIS; COLLECTIVE INVASION; ENGINEERING TUMORS; SYNTHETIC MATRIX; DRUG-RESISTANCE;
D O I
10.1146/annurev-cancerbio-050216-034431
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Solid tumors are characterized by a remodeled and stiffened extracellular matrix. The extracellular matrix is not a passive by-product of the tumor, but actively compromises tissue-specific differentiation, enhances tumor cell proliferation and survival, and fosters tumor cell invasion and migration. The tumor extracellular matrix also influences the behavior of the stromal cells, which through vicious, feedforward-reinforcing pathways promote tumor progression and compromise treatment efficacy. To investigate how the tumor extracellular matrix alters cancer phenotype and treatment, a number of three-dimensional, organotypic culture models have been developed that employ a variety of materials, including natural matrices, collagen, fibrin, and reconstituted basement membrane gels, as well as synthetic hydrogel materials such as polyacrylamide and polyethylene glycol. These models have been used to interrogate how specific microenvironmental features modify tumor and stromal cell function and to identify the molecular mechanisms that regulate tumorigenesis and therapeutic efficacy. To translate these findings into more effective treatment strategies for patients, clinically informed studies are needed that incorporate computational modeling and in vivo validation.
引用
收藏
页码:313 / 334
页数:22
相关论文
共 173 条
[1]   Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration [J].
Acerbi, I. ;
Cassereau, L. ;
Dean, I. ;
Shi, Q. ;
Au, A. ;
Park, C. ;
Chen, Y. Y. ;
Liphardt, J. ;
Hwang, E. S. ;
Weaver, V. M. .
INTEGRATIVE BIOLOGY, 2015, 7 (10) :1120-1134
[2]   Prospective identification of tumorigenic breast cancer cells [J].
Al-Hajj, M ;
Wicha, MS ;
Benito-Hernandez, A ;
Morrison, SJ ;
Clarke, MF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (07) :3983-3988
[3]   A Mechanical Checkpoint Controls Multicellular Growth through YAP/TAZ Regulation by Actin-Processing Factors [J].
Aragona, Mariaceleste ;
Panciera, Tito ;
Manfrin, Andrea ;
Giulitti, Stefano ;
Michielin, Federica ;
Elvassore, Nicola ;
Dupont, Sirio ;
Piccolo, Stefano .
CELL, 2013, 154 (05) :1047-1059
[4]   3D Traction Stresses Activate Protease-Dependent Invasion of Cancer Cells [J].
Aung, Aereas ;
Seo, Young N. ;
Lu, Shaoying ;
Wang, Yingxiao ;
Jamora, Colin ;
del Alamo, Juan C. ;
Varghese, Shyni .
BIOPHYSICAL JOURNAL, 2014, 107 (11) :2528-2537
[5]   Tumorigenesis and the angiogenic switch [J].
Bergers, G ;
Benjamin, LE .
NATURE REVIEWS CANCER, 2003, 3 (06) :401-410
[6]   The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma [J].
Bhat, Krishna P. L. ;
Salazar, Katrina L. ;
Balasubramaniyan, Veerakumar ;
Wani, Khalida ;
Heathcock, Lindsey ;
Hollingsworth, Faith ;
James, Johanna D. ;
Gumin, Joy ;
Diefes, Kristin L. ;
Kim, Se Hoon ;
Turski, Alice ;
Azodi, Yasaman ;
Yang, Yuhui ;
Doucette, Tiffany ;
Colman, Howard ;
Sulman, Erik P. ;
Lang, Frederick F. ;
Rao, Ganesh ;
Copray, Sjef ;
Vaillant, Brian D. ;
Aldape, Kenneth D. .
GENES & DEVELOPMENT, 2011, 25 (24) :2594-2609
[7]   Endothelial barrier disruption and recovery is controlled by substrate stiffness [J].
Birukova, Anna A. ;
Tian, Xinyong ;
Cokic, Ivan ;
Beckham, Yvonne ;
Gardel, Margaret L. ;
Birukov, Konstantin G. .
MICROVASCULAR RESEARCH, 2013, 87 :50-57
[8]   Fibrinopeptides and fibnin gel structure [J].
Blombäck, B ;
Bark, N .
BIOPHYSICAL CHEMISTRY, 2004, 112 (2-3) :147-151
[9]   ECM components guide IL-10 producing regulatory T-cell (TR1) induction from effector memory T-cell precursors [J].
Bollyky, Paul L. ;
Wu, Rebecca P. ;
Falk, Ben A. ;
Lord, James D. ;
Long, S. Alice ;
Preisinger, Anton ;
Teng, Brandon ;
Holt, Gregory E. ;
Standifer, Nathan E. ;
Braun, Kathleen R. ;
Xie, Cindy Fang ;
Samuels, Peter L. ;
Vernon, Robert B. ;
Gebe, John A. ;
Wight, Thomas N. ;
Nepom, Gerald T. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (19) :7938-7943
[10]   Remodelling the extracellular matrix in development and disease [J].
Bonnans, Caroline ;
Chou, Jonathan ;
Werb, Zena .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2014, 15 (12) :786-801