Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics

被引:722
作者
Moroz, Vitaly [1 ]
Van Schaftingen, Jean [2 ]
机构
[1] Swansea Univ, Dept Math, Swansea SA2 8PP, W Glam, Wales
[2] Catholic Univ Louvain, Inst Rech Math & Phys, B-1348 Louvain, Belgium
关键词
Stationary Choquard equation; Stationary nonlinear Schrodinger-Newton equation; Stationary Hartree equation; Riesz potential; Nonlocal semilinear elliptic problem; Pohozaev identity; Existence; Symmetry; Decay asymptotics; CONCENTRATION-COMPACTNESS PRINCIPLE; SCHRODINGER-EQUATIONS; CALCULUS; SYMMETRY;
D O I
10.1016/j.jfa.2013.04.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a semilinear elliptic problem -Delta u+u = (I alpha*vertical bar u vertical bar(p))vertical bar u vertical bar(p-2)u R-N, where I-alpha is a Riesz potential and p > 1. This family of equations includes the Choquard or nonlinear Schrodinger Newton equation. For an optimal range of parameters we prove the existence of a positive groundstate solution of the equation. We also establish regularity and positivity of the groundstates and prove that all positive groundstates are radially symmetric and monotone decaying about some point. Finally, we derive the decay asymptotics at infinity of the groundstates. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:153 / 184
页数:32
相关论文
共 35 条
[1]  
Adams R., 2003, SOBOLEV SPACES
[2]  
AGMON S, 1985, LECT NOTES MATH, V1159, P1
[3]  
BAERNSTEIN A, 1994, SYM MATH, V35, P47
[4]   Partial symmetry of least energy nodal solutions to some variational problems [J].
Bartsch, T ;
Weth, T ;
Willew, M .
JOURNAL D ANALYSE MATHEMATIQUE, 2005, 96 (1) :1-18
[5]  
Bogachev V. I., 2007, Measure Theory, V1, DOI [10.1007/978-3-540-34514-5, DOI 10.1007/978-3-540-34514-5]
[6]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[7]   An approach to symmetrization via polarization [J].
Brock, F ;
Solynin, AY .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (04) :1759-1796
[8]   Classification of solutions for an integral equation [J].
Chen, WX ;
Li, CM ;
Ou, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (03) :330-343
[9]  
Choquard P, 2008, DIFFER INTEGRAL EQU, V21, P665
[10]   Multiple solutions to a magnetic nonlinear Choquard equation [J].
Cingolani, Silvia ;
Clapp, Monica ;
Secchi, Simone .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (02) :233-248