Protein structure determination using metagenome sequence data

被引:365
作者
Ovchinnikov, Sergey [1 ,2 ,3 ]
Park, Hahnbeom [1 ,2 ]
Varghese, Neha [4 ]
Huang, Po-Ssu [1 ,2 ]
Pavlopoulos, Georgios A. [4 ]
Kim, David E. [1 ,5 ]
Kamisetty, Hetunandan [6 ]
Kyrpides, Nikos C. [4 ,7 ]
Baker, David [1 ,2 ,5 ]
机构
[1] Univ Washington, Dept Biochem, Seattle, WA 98105 USA
[2] Univ Washington, Inst Prot Design, Seattle, WA 98105 USA
[3] Univ Washington, Mol & Cellular Biol Program, Seattle, WA 98195 USA
[4] Joint Genome Inst, Walnut Creek, CA 94598 USA
[5] Univ Washington, Howard Hughes Med Inst, Box 357370, Seattle, WA 98105 USA
[6] Facebook Inc, Seattle, WA 98109 USA
[7] King Abdulaziz Univ, Dept Biol Sci, Jeddah, Saudi Arabia
关键词
STRUCTURE PREDICTION; CRYSTAL-STRUCTURE; FAMILIES; REVEALS; DOMAINS; FOLD;
D O I
10.1126/science.aah4043
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Despite decades of work by structural biologists, there are still similar to 5200 protein families with unknown structure outside the range of comparative modeling. We show that Rosetta structure prediction guided by residue-residue contacts inferred from evolutionary information can accurately model proteins that belong to large families and that metagenome sequence data more than triple the number of protein families with sufficient sequences for accurate modeling. We then integrate metagenome data, contact-based structure matching, and Rosetta structure calculations to generate models for 614 protein families with currently unknown structures; 206 are membrane proteins and 137 have folds not represented in the Protein Data Bank. This approach provides the representative models for large protein families originally envisioned as the goal of the Protein Structure Initiative at a fraction of the cost.
引用
收藏
页码:294 / 297
页数:4
相关论文
共 41 条
[1]  
Abriata L. A., 2015, BIORXIV, DOI [10.1101/013581, DOI 10.1101/013581]
[2]   Data growth and its impact on the SCOP database: new developments [J].
Andreeva, Antonina ;
Howorth, Dave ;
Chandonia, John-Marc ;
Brenner, Steven E. ;
Hubbard, Tim J. P. ;
Chothia, Cyrus ;
Murzin, Alexey G. .
NUCLEIC ACIDS RESEARCH, 2008, 36 :D419-D425
[3]  
[Anonymous], 2012, BIOL REP
[4]   Computation and Functional Studies Provide a Model for the Structure of the Zinc Transporter hZIP4 [J].
Antala, Sagar ;
Ovchinnikov, Sergey ;
Kamisetty, Hetunandan ;
Baker, David ;
Dempski, Robert E. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2015, 290 (29) :17796-17805
[5]   Learning generative models for protein fold families [J].
Balakrishnan, Sivaraman ;
Kamisetty, Hetunandan ;
Carbonell, Jaime G. ;
Lee, Su-In ;
Langmead, Christopher James .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2011, 79 (04) :1061-1078
[6]   D3: Data-Driven Documents [J].
Bostock, Michael ;
Ogievetsky, Vadim ;
Heer, Jeffrey .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2011, 17 (12) :2301-2309
[7]  
DiMaio F, 2013, NAT METHODS, V10, P1102, DOI [10.1038/NMETH.2648, 10.1038/nmeth.2648]
[8]   Improved contact prediction in proteins: Using pseudolikelihoods to infer Potts models [J].
Ekeberg, Magnus ;
Lovkvist, Cecilia ;
Lan, Yueheng ;
Weigt, Martin ;
Aurell, Erik .
PHYSICAL REVIEW E, 2013, 87 (01)
[9]   Crystal structure of an Fe-S cluster-containing fumarate hydratase enzyme from Leishmania major reveals a unique protein fold [J].
Feliciano, Patricia R. ;
Drennan, Catherine L. ;
Cristina Nonato, M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (35) :9804-9809
[10]   The Pfam protein families database: towards a more sustainable future [J].
Finn, Robert D. ;
Coggill, Penelope ;
Eberhardt, Ruth Y. ;
Eddy, Sean R. ;
Mistry, Jaina ;
Mitchell, Alex L. ;
Potter, Simon C. ;
Punta, Marco ;
Qureshi, Matloob ;
Sangrador-Vegas, Amaia ;
Salazar, Gustavo A. ;
Tate, John ;
Bateman, Alex .
NUCLEIC ACIDS RESEARCH, 2016, 44 (D1) :D279-D285