Internality of generalized averaged Gaussian quadrature rules and truncated variants for measures induced by Chebyshev polynomials

被引:10
作者
Djukic, Dusan Lj. [1 ]
Reichel, Lothar [2 ]
Spalevic, Miodrag M. [1 ]
机构
[1] Univ Belgrade, Fac Mech Engn, Dept Math, Kraljice Marije 16, Belgrade 11120 35, Serbia
[2] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
关键词
Gauss quadrature; Averaged Gauss quadrature; Truncated generalized averaged Gauss quadrature; Internality of quadrature; Measures induced by Chebyshev polynomials; KRONROD QUADRATURE; FORMULAS; APPROXIMATION;
D O I
10.1016/j.apnum.2019.03.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Generalized averaged Gaussian quadrature rules and truncated variants associated with a nonnegative measure with support on a real open interval {t : a < t < b} may have nodes outside this interval, in other words the rules may fail to be internal. Such rules cannot be applied when the integrand is defined on {t : a < t < b} only. This paper investigates whether generalized averaged Gaussian quadrature rules and truncated variants are internal for measures induced by Chebyshev polynomials. Our results complement those of Notaris [13] for Gauss-Kronrod quadrature formulas for the same kind of measures. (C) 2019 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:190 / 205
页数:16
相关论文
共 24 条
[1]   Symmetric Gauss-Lobatto and modified anti-Gauss rules [J].
Calvetti, D ;
Reichel, L .
BIT NUMERICAL MATHEMATICS, 2003, 43 (03) :541-554
[2]  
Calvetti D, 1999, INT S NUM M, V131, P41
[3]  
GAUTSCHI W, 1989, J COMPUT APPL MATH, V27, P429
[4]  
GAUTSCHI W, 1989, COMPUTATION CONTROL, P63
[5]  
Gautschi W., 1993, Aequationes Math., V46, P174, DOI 10.1007/BF01834006
[6]   CALCULATION OF GAUSS QUADRATURE RULES [J].
GOLUB, GH ;
WELSCH, JH .
MATHEMATICS OF COMPUTATION, 1969, 23 (106) :221-&
[7]   Generalized averaged Szego quadrature rules [J].
Jagels, Carl ;
Reichel, Lothar ;
Tang, Tunan .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 311 :645-654
[8]   NONEXISTENCE OF EXTENDED GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE RULES WITH POSITIVE WEIGHTS [J].
KAHANER, DK ;
MONEGATO, G .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1978, 29 (06) :983-986
[9]   Anti-Gaussian quadrature formulas [J].
Laurie, DP .
MATHEMATICS OF COMPUTATION, 1996, 65 (214) :739-747
[10]  
Notaris S. E., 1995, Numerical Algorithms, V10, P167, DOI 10.1007/BF02198302