Using gate-modulated Raman scattering and electron-phonon interactions to probe single-layer graphene: A different approach to assign phonon combination modes

被引:27
作者
Mafra, D. L. [1 ,2 ]
Kong, J. [2 ]
Sato, K. [3 ]
Saito, R. [3 ]
Dresselhaus, M. S. [2 ,4 ]
Araujo, P. T. [2 ]
机构
[1] Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil
[2] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[3] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan
[4] MIT, Dept Phys, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
CARBON NANOTUBES; GRAPHITE; SPECTROSCOPY;
D O I
10.1103/PhysRevB.86.195434
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Gate-modulated and laser-dependent Raman spectroscopy have been widely used to study q = 0 zone center phonon modes, their self-energy, and their coupling to electrons in graphene systems. In this work we use gate-modulated Raman of q not equal 0 phonons as a technique to understand the nature of five second-order Raman combination modes observed in the frequency range of 1700-2300 cm(-1) of single-layer graphene (SLG). Anomalous phonon self-energy renormalization phenomena are observed in all five combination modes within this intermediate frequency region, which can clearly be distinguished from one another. By combining the anomalous phonon renormalization effect with the double resonance Raman theory, which includes both phonon dispersion relations and angular dependence of the electron-phonon scattering matrix elements, and by comparing it to the experimentally obtained phonon dispersion, measured by using different laser excitation energies, we can assign each Raman peak to the proper phonon combination mode. This approach should also shed light on the understanding of more complex structures such as few-layer graphene (FLG) and its stacking orders as well as other two-dimensional (2D)-like materials.
引用
收藏
页数:9
相关论文
共 33 条
[1]   Effects of valley mixing and exchange on excitons in carbon nanotubes with Aharonov-Bohm flux [J].
Ando, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2006, 75 (02)
[2]   Phonon Self-Energy Corrections to Nonzero Wave-Vector Phonon Modes in Single-Layer Graphene [J].
Araujo, P. T. ;
Mafra, D. L. ;
Sato, K. ;
Saito, R. ;
Kong, J. ;
Dresselhaus, M. S. .
PHYSICAL REVIEW LETTERS, 2012, 109 (04)
[3]  
BARANOV AV, 1987, OPT SPEKTROSK+, V62, P1036
[4]   Raman Characterization of ABA- and ABC-Stacked Trilayer Graphene [J].
Cong, Chunxiao ;
Yu, Ting ;
Sato, Kentaro ;
Shang, Jingzhi ;
Saito, Riichiro ;
Dresselhaus, Gene F. ;
Dresselhaus, Mildred S. .
ACS NANO, 2011, 5 (11) :8760-8768
[5]   Second-Order Overtone and Combination Raman Modes of Graphene Layers in the Range of 1690-2150 cm-1 [J].
Cong, Chunxiao ;
Yu, Ting ;
Saito, Riichiro ;
Dresselhaus, Gene F. ;
Dresselhaus, Mildred S. .
ACS NANO, 2011, 5 (03) :1600-1605
[6]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215
[7]  
Dresselhaus M. S. G., 1988, SPRINGER SERIES MAT, V5
[8]   Raman spectroscopy of carbon nanotubes [J].
Dresselhaus, MS ;
Dresselhaus, G ;
Saito, R ;
Jorio, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 409 (02) :47-99
[9]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[10]   Electron-phonon matrix elements in single-wall carbon nanotubes [J].
Jiang, J ;
Saito, R ;
Samsonidze, GG ;
Chou, SG ;
Jorio, A ;
Dresselhaus, G ;
Dresselhaus, MS .
PHYSICAL REVIEW B, 2005, 72 (23)