Water-use efficiency and transpiration across European forests during the Anthropocene

被引:374
作者
Frank, D. C. [1 ,2 ]
Poulter, B. [3 ,4 ,5 ]
Saurer, M. [6 ]
Esper, J. [7 ]
Huntingford, C. [8 ]
Helle, G. [9 ]
Treydte, K. [1 ]
Zimmermann, N. E. [1 ]
Schleser, G. H. [9 ,10 ]
Ahlstrom, A. [11 ,12 ]
Ciais, P. [5 ]
Friedlingstein, P. [13 ]
Levis, S. [14 ]
Lomas, M. [15 ]
Sitch, S. [13 ]
Viovy, N. [5 ]
Andreu-Hayles, L. [16 ]
Bednarz, Z. [17 ]
Berninger, F. [18 ]
Boettger, T. [19 ]
D'Alessandro, C. M. [20 ]
Daux, V. [5 ]
Filot, M. [21 ]
Grabner, M. [22 ]
Gutierrez, E. [23 ]
Haupt, M. [19 ]
Hilasvuori, E. [24 ]
Jungner, H. [18 ]
Kalela-Brundin, M. [25 ]
Krapiec, M. [26 ]
Leuenberger, M. [21 ]
Loader, N. J. [27 ]
Marah, H. [28 ]
Masson-Delmotte, V. [5 ]
Pazdur, A. [29 ]
Pawelczyk, S. [29 ]
Pierre, M. [5 ]
Planells, O. [23 ]
Pukiene, R. [30 ]
Reynolds-Henne, C. E. [6 ]
Rinne, K. T. [6 ]
Saracino, A. [31 ]
Sonninen, E. [18 ]
Stievenard, M. [5 ]
Switsur, V. R. [32 ]
Szczepanek, M. [29 ]
Szychowska-Krapiec, E. [26 ]
Todaro, L. [20 ]
Waterhouse, J. S. [32 ]
Weigl, M. [33 ]
机构
[1] Swiss Fed Res Inst WSL, CH-8903 Birmensdorf, Switzerland
[2] Univ Bern, Oeschger Ctr Climate Change Res, CH-3012 Bern, Switzerland
[3] Montana State Univ, Inst Ecosyst, Bozeman, MT 59717 USA
[4] Montana State Univ, Dept Ecol, Bozeman, MT 59717 USA
[5] Inst Pierre Simon Laplace, UVSQ, Lab Sci Climat & Environm, CEA,CNRS,UMR8212, F-91191 Gif Sur Yvette, France
[6] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
[7] Johannes Gutenberg Univ Mainz, Dept Geog, D-55099 Mainz, Germany
[8] Ctr Ecol & Hydrol, Wallingford OX10 8BB, Oxon, England
[9] German Ctr Geosci GFZ, Helmholtz Ctr Potsdam, D-14473 Potsdam, Germany
[10] Forschungszentrum Julich, D-52428 Julich, Germany
[11] Lund Univ, Dept Phys Geog & Ecosyst Sci, SE-22362 Lund, Sweden
[12] Stanford Univ, Sch Earth Energy & Environm Sci, Dept Earth Syst Sci, Stanford, CA 94305 USA
[13] Univ Exeter, Exeter EX4 4QF, Devon, England
[14] Natl Ctr Atmospher Res, Boulder, CO 80301 USA
[15] Univ Sheffield, Sheffield S10 2TN, S Yorkshire, England
[16] Lamont Doherty Earth Observ, Palisades, NY 10964 USA
[17] Univ Agr, PL-31120 Krakow, Poland
[18] Univ Helsinki, FIN-00014 Helsinki, Finland
[19] UFZ Helmholtz Ctr Environm Res, Dept Catchment Hydrol, D-06120 Halle, Germany
[20] Univ Basilicata, I-85100 Potenza, Italy
[21] Univ Bern, CH-3012 Bern, Switzerland
[22] Univ Nat Resources & Life Sci BOKU, A-1180 Vienna, Austria
[23] Univ Barcelona, Dept Ecol, E-08028 Barcelona, Spain
[24] Finnish Environm Inst, Helsinki 00251, Finland
[25] Forestry Museum, S-92123 Lycksele, Sweden
[26] AGH Univ Sci & Technol, PL-30059 Krakow, Poland
[27] Swansea Univ, Dept Geog, Swansea SA2 8PP, W Glam, Wales
[28] CNESTEN, Rabat 10001, Morocco
[29] Silesian Tech Univ, PL-44100 Gliwice, Poland
[30] Vytautas Magnus Univ, LT-44248 Kaunas, Lithuania
[31] Univ Naples Federico II, I-80055 Portici, Italy
[32] Anglia Ruskin Univ, Cambridge CB1 1PT, England
[33] Holzforsch Austria, A-1030 Vienna, Austria
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
CARBON-ISOTOPE DISCRIMINATION; CO2; FERTILIZATION; GAS-EXCHANGE; RISING CO2; TREE-RING; CLIMATE; RUNOFF; RESPONSES; INCREASE; TRENDS;
D O I
10.1038/nclimate2614
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Earth's carbon and hydrologic cycles are intimately coupled by gas exchange through plant stomata(1-3). However, uncertainties in the magnitude(4-6) and consequences(7,8) of the physiological responses(9,10) of plants to elevated CO2 in natural environments hinders modelling of terrestrial water cycling and carbon storage(11). Here we use annually resolved long-term delta C-13 tree-ring measurements across a European forest network to reconstruct the physiologically driven response of intercellular CO2 (Ci) caused by atmospheric CO2 (Ca) trends. When removing meteorological signals from the delta C-13 measurements, we find that trees across Europe regulated gas exchange so that for one ppmv atmospheric CO2 increase, C-i increased by similar to 0.76 ppmv, most consistent with moderate control towards a constant C-i/C-a ratio. This response corresponds to twentiethcentury intrinsic water-use efficiency (iWUE) increases of 14 +/- 10 and 22 +/- 6% at broadleaf and coniferous sites, respectively. An ensemble of process-based global vegetation models shows similar CO2 effects on iWUE trends. Yet, when operating these models with climate drivers reintroduced, despite decreased stomatal opening, 5% increases in European forest transpiration are calculated over the twentieth century. This counterintuitive result arises from lengthened growing seasons, enhanced evaporative demand in a warming climate, and increased leaf area, which together oppose effects of CO2-induced stomatal closure. Our study questions changes to the hydrological cycle, such as reductions in transpiration and air humidity, hypothesized to result from plant responses to anthropogenic emissions.
引用
收藏
页码:579 / +
页数:6
相关论文
共 35 条
[1]   The response of photosynthesis and stomatal conductance to rising [CO2]:: mechanisms and environmental interactions [J].
Ainsworth, Elizabeth A. ;
Rogers, Alistair .
PLANT CELL AND ENVIRONMENT, 2007, 30 (03) :258-270
[2]   Site- and species-specific responses of forest growth to climate across the European continent [J].
Babst, Flurin ;
Poulter, Benjamin ;
Trouet, Valerie ;
Tan, Kun ;
Neuwirth, Burkhard ;
Wilson, Robert ;
Carrer, Marco ;
Grabner, Michael ;
Tegel, Willy ;
Levanic, Tom ;
Panayotov, Momchil ;
Urbinati, Carlo ;
Bouriaud, Olivier ;
Ciais, Philippe ;
Frank, David .
GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2013, 22 (06) :706-717
[3]   Projected increase in continental runoff due to plant responses to increasing carbon dioxide [J].
Betts, Richard A. ;
Boucher, Olivier ;
Collins, Matthew ;
Cox, Peter M. ;
Falloon, Peter D. ;
Gedney, Nicola ;
Hemming, Deborah L. ;
Huntingford, Chris ;
Jones, Chris D. ;
Sexton, David M. H. ;
Webb, Mark J. .
NATURE, 2007, 448 (7157) :1037-U5
[4]   Reduced climate sensitivity of carbon, oxygen and hydrogen stable isotope ratios in tree-ring cellulose of silver fir (Abies alba Mill.) influenced by background SO2 in Franconia (Germany, Central Europe) [J].
Boettger, Tatjana ;
Haupt, Marika ;
Friedrich, Michael ;
Waterhouse, John S. .
ENVIRONMENTAL POLLUTION, 2014, 185 :281-294
[5]   Importance of carbon dioxide physiological forcing to future climate change [J].
Cao, Long ;
Bala, Govindasamy ;
Caldeira, Ken ;
Nemani, Ramakrishna ;
Ban-Weiss, George .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (21) :9513-9518
[6]   European temperatures in CMIP5: origins of present-day biases and future uncertainties [J].
Cattiaux, Julien ;
Douville, Herve ;
Peings, Yannick .
CLIMATE DYNAMICS, 2013, 41 (11-12) :2889-2907
[7]   Environmental control of leaf area production: Implications for vegetation and land-surface modeling [J].
Cowling, SA ;
Field, CB .
GLOBAL BIOGEOCHEMICAL CYCLES, 2003, 17 (01)
[8]   Forest water use and water use efficiency at elevated CO2: a model-data intercomparison at two contrasting temperate forest FACE sites [J].
De Kauwe, Martin G. ;
Medlyn, Belinda E. ;
Zaehle, Soenke ;
Walker, Anthony P. ;
Dietze, Michael C. ;
Hickler, Thomas ;
Jain, Atul K. ;
Luo, Yiqi ;
Parton, William J. ;
Prentice, I. Colin ;
Smith, Benjamin ;
Thornton, Peter E. ;
Wang, Shusen ;
Wang, Ying-Ping ;
Warlind, David ;
Weng, Ensheng ;
Crous, Kristine Y. ;
Ellsworth, David S. ;
Hanson, Paul J. ;
Seok Kim, Hyun- ;
Warren, Jeffrey M. ;
Oren, Ram ;
Norby, Richard J. .
GLOBAL CHANGE BIOLOGY, 2013, 19 (06) :1759-1779
[9]   Impact of CO2 fertilization on maximum foliage cover across the globe's warm, arid environments [J].
Donohue, Randall J. ;
Roderick, Michael L. ;
McVicar, Tim R. ;
Farquhar, Graham D. .
GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (12) :3031-3035
[10]   More efficient plants: A consequence of rising atmospheric CO2? [J].
Drake, BG ;
GonzalezMeler, MA ;
Long, SP .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1997, 48 :609-639