An algorithm for counting short cycles in bipartite graphs

被引:58
作者
Halford, TR [1 ]
Chugg, KM [1 ]
机构
[1] Univ So Calif, Inst Commun Sci, Los Angeles, CA 90089 USA
关键词
bipartite graphs; cycles; girth; graphical models of codes; loops;
D O I
10.1109/TIT.2005.860472
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let G = (U boolean OR W, epsilon) be a bipartite graph with disjoint vertex sets U and W, edge set epsilon, and girth g. This correspondence presents an algorithm for counting the number of cycles of length g, g + 2, and g + 4 incident upon every vertex in U boolean OR W. The proposed cycle counting algorithm consists of integer matrix operations and its complexity grows as O(gn(3)) where n. = max(vertical bar U vertical bar, vertical bar W vertical bar).
引用
收藏
页码:287 / 292
页数:6
相关论文
共 22 条
[1]   Finding and counting given length cycles [J].
Alon, N ;
Yuster, R ;
Zwick, U .
ALGORITHMICA, 1997, 17 (03) :209-223
[2]  
[Anonymous], P 20 BIENN S COMM KI
[3]   Design of parallel concatenated convolutional codes [J].
Benedetto, S ;
Montorsi, G .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1996, 44 (05) :591-600
[4]   An updated set of Basic Linear Algebra Subprograms (BLAS) [J].
Blackford, LS ;
Demmel, J ;
Dongarra, J ;
Duff, I ;
Hammarling, S ;
Henry, G ;
Heroux, M ;
Kaufman, L ;
Lumsdaine, A ;
Petitet, A ;
Pozo, R ;
Remington, K ;
Whaley, RC .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2002, 28 (02) :135-151
[5]  
Chugg K. M., 2001, ITERATIVE DETECTION
[6]  
Diestel R., 2000, GRAPH THEORY
[7]  
Flum J, 2002, ANN IEEE SYMP FOUND, P538, DOI 10.1109/SFCS.2002.1181978
[8]   LOW-DENSITY PARITY-CHECK CODES [J].
GALLAGER, RG .
IRE TRANSACTIONS ON INFORMATION THEORY, 1962, 8 (01) :21-&
[9]  
HALFORD TR, 2004, 2004 COMM THEOR WORK
[10]   Regular and irregular progressive edge-growth tanner graphs [J].
Hu, XY ;
Eleftheriou, E ;
Arnold, DM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (01) :386-398