Past Roadblocks and New Opportunities in Transcription Factor Network Mapping

被引:20
作者
Brent, Michael R. [1 ,2 ,3 ]
机构
[1] Washington Univ, Dept Comp Sci, St Louis, MO 63130 USA
[2] Washington Univ, Dept Genet, St Louis, MO 63110 USA
[3] Washington Univ, Ctr Genome Sci & Syst Biol, St Louis, MO 63130 USA
基金
美国国家卫生研究院;
关键词
GENE REGULATORY NETWORKS; DNA-BINDING SPECIFICITIES; MESSENGER-RNA EXPRESSION; ZINC-FINGER PROTEINS; HUMAN CELL-TYPES; CHIP-SEQ; DE-NOVO; GENOME; RECONSTRUCTION; PROMOTERS;
D O I
10.1016/j.tig.2016.08.009
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
One of the principal mechanisms by which cells differentiate and respond to changes in external signals or conditions is by changing the activity levels of transcription factors (TFs). This changes the transcription rates of target genes via the cell's TF network, which ultimately contributes to reconfiguring cellular state. Since microarrays provided our first window into global cellular state, computational biologists have eagerly attacked the problem of mapping TF networks, a key part of the cell's control circuitry. In retrospect, however, steady-state mRNA abundance levels were a poor substitute for TF activity levels and gene transcription rates. Likewise, mapping TF binding through chromatin immunoprecipitation proved less predictive of functional regulation and less amenable to systematic elucidation of complete networks than originally hoped. This review explains these roadblocks and the current, unprecedented blossoming of new experimental techniques built on second-generation sequencing, which hold out the promise of rapid progress in TF network mapping.
引用
收藏
页码:736 / 750
页数:15
相关论文
共 99 条
[11]   Predicting transcription factor activities from combined analysis of microarray and ChIP data: a partial least squares approach [J].
Boulesteix, Anne-Laure ;
Strimmer, Korbinian .
THEORETICAL BIOLOGY AND MEDICAL MODELLING, 2005, 2
[12]  
Buenrostro JD, 2013, NAT METHODS, V10, P1213, DOI [10.1038/NMETH.2688, 10.1038/nmeth.2688]
[13]   Predictive modeling of genome-wide mRNA expression: From modules to molecules [J].
Bussemaker, Harmen J. ;
Foat, Barrett C. ;
Ward, Lucas D. .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 2007, 36 :329-347
[14]   CellNet: Network Biology Applied to Stem Cell Engineering [J].
Cahan, Patrick ;
Li, Hu ;
Morris, Samantha A. ;
da Rocha, Edroaldo Lummertz ;
Daley, George Q. ;
Collins, James J. .
CELL, 2014, 158 (04) :903-915
[15]   Prediction of phenotype and gene expression for combinations of mutations [J].
Carter, Gregory W. ;
Prinz, Susanne ;
Neou, Christine ;
Shelby, J. Patrick ;
Marzolf, Bruz ;
Thorsson, Vesteinn ;
Galitski, Timothy .
MOLECULAR SYSTEMS BIOLOGY, 2007, 3 (1) :1-9
[16]   Use of Pleiotropy to Model Genetic Interactions in a Population [J].
Carter, Gregory W. ;
Hays, Michelle ;
Sherman, Amir ;
Galitski, Timothy .
PLOS GENETICS, 2012, 8 (10)
[17]  
Carter GW, 2012, BIOCOMPUT-PAC SYM, P19
[18]   Principles of regulatory information conservation between mouse and human [J].
Cheng, Yong ;
Ma, Zhihai ;
Kim, Bong-Hyun ;
Wu, Weisheng ;
Cayting, Philip ;
Boyle, Alan P. ;
Sundaram, Vasavi ;
Xing, Xiaoyun ;
Dogan, Nergiz ;
Li, Jingjing ;
Euskirchen, Ghia ;
Lin, Shin ;
Lin, Yiing ;
Visel, Axel ;
Kawli, Trupti ;
Yang, Xinqiong ;
Patacsil, Dorrelyn ;
Keller, Cheryl A. ;
Giardine, Belinda ;
Kundaje, Anshul ;
Wang, Ting ;
Pennacchio, Len A. ;
Weng, Zhiping ;
Hardison, Ross C. ;
Snyder, Michael P. .
NATURE, 2014, 515 (7527) :371-+
[19]   Recognition models to predict DNA-binding specificities of homeodomain proteins [J].
Christensen, Ryan G. ;
Enuameh, Metewo Selase ;
Noyes, Marcus B. ;
Brodsky, Michael H. ;
Wolfe, Scot A. ;
Stormo, Gary D. .
BIOINFORMATICS, 2012, 28 (12) :I84-I89
[20]   A modified bacterial one-hybrid system yields improved quantitative models of transcription factor specificity [J].
Christensen, Ryan G. ;
Gupta, Ankit ;
Zuo, Zheng ;
Schriefer, Lawrence A. ;
Wolfe, Scot A. ;
Stormo, Gary D. .
NUCLEIC ACIDS RESEARCH, 2011, 39 (12) :e83