Targeted Cancer Immunotherapy: Nanoformulation Engineering and Clinical Translation

被引:22
作者
Yu, Meihua [1 ]
Yang, Wei [2 ]
Yue, Wenwen [3 ]
Chen, Yu [1 ]
机构
[1] Shanghai Univ, Sch Life Sci, Materdicine Lab, Shanghai 200444, Peoples R China
[2] Shanghai Jiao Tong Univ, Xinhua Hosp, Sch Med, Dept Urol, 1665 Kongjiang Rd, Shanghai 200092, Peoples R China
[3] Tongji Univ, Sch Med, Shanghai Peoples Hosp 10,Canc Ctr,Ultrasound Res, Dept Med Ultrasound,Shanghai Engn Res Ctr Ultraso, Shanghai 200072, Peoples R China
基金
中国国家自然科学基金;
关键词
active targeting; cancer therapy; immune cell; immuno-drug; nanoformulation; TUMOR-ASSOCIATED MACROPHAGES; CELL LUNG-CANCER; NATURAL-KILLER-CELLS; REGULATORY T-CELLS; PHASE I/II TRIAL; DENDRITIC CELLS; IMMUNE-RESPONSES; PROTEIN CORONA; DRUG-DELIVERY; NK CELLS;
D O I
10.1002/advs.202204335
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the rapid growth of advanced nanoengineering strategies, there are great implications for therapeutic immunostimulators formulated in nanomaterials to combat cancer. It is crucial to direct immunostimulators to the right tissue and specific immune cells at the right time, thereby orchestrating the desired, potent, and durable immune response against cancer. The flexibility of nanoformulations in size, topology, softness, and multifunctionality allows precise regulation of nano-immunological activities for enhanced therapeutic effect. To grasp the modulation of immune response, research efforts are needed to understand the interactions of immune cells at lymph organs and tumor tissues, where the nanoformulations guide the immunostimulators to function on tissue specific subsets of immune cells. In this review, recent advanced nanoformulations targeting specific subset of immune cells, such as dendritic cells (DCs), T cells, monocytes, macrophages, and natural killer (NK) cells are summarized and discussed, and clinical development of nano-paradigms for targeted cancer immunotherapy is highlighted. Here the focus is on the targeting nanoformulations that can passively or actively target certain immune cells by overcoming the physiobiological barriers, instead of directly injecting into tissues. The opportunities and remaining obstacles for the clinical translation of immune cell targeting nanoformulations in cancer therapy are also discussed.
引用
收藏
页数:37
相关论文
共 198 条
[1]   Thermal Control of Engineered T-cells [J].
Abedi, Mohamad H. ;
Lee, Justin ;
Piraner, Dan, I ;
Shapiro, Mikhail G. .
ACS SYNTHETIC BIOLOGY, 2020, 9 (08) :1941-1950
[2]   SELF-AGGREGATES OF HYDROPHOBIZED POLYSACCHARIDES IN WATER - FORMATION AND CHARACTERISTICS OF NANOPARTICLES [J].
AKIYOSHI, K ;
DEGUCHI, S ;
MORIGUCHI, N ;
YAMAGUCHI, S ;
SUNAMOTO, J .
MACROMOLECULES, 1993, 26 (12) :3062-3068
[3]   Nanoparticle T-cell engagers as a modular platform for cancer immunotherapy [J].
Alhallak, Kinan ;
Sun, Jennifer ;
Wasden, Katherine ;
Guenthner, Nicole ;
O'Neal, Julie ;
Muz, Barbara ;
King, Justin ;
Kohnen, Daniel ;
Vij, Ravi ;
Achilefu, Samuel ;
DiPersio, John F. ;
Azab, Abdel Kareem .
LEUKEMIA, 2021, 35 (08) :2346-2357
[4]   Humanized immune system mouse models: progress, challenges and opportunities [J].
Allen, Todd M. ;
Brehm, Michael A. ;
Bridges, Sandra ;
Ferguson, Stacy ;
Kumar, Priti ;
Mirochnitchenko, Oleg ;
Palucka, Karolina ;
Pelanda, Roberta ;
Sanders-Beer, Brigitte ;
Shultz, Leonard D. ;
Su, Lishan ;
PrabhuDas, Mercy .
NATURE IMMUNOLOGY, 2019, 20 (07) :770-774
[5]   The clinical trial landscape for PD1/PDL1 immune checkpoint inhibitors [J].
Tang, Jun ;
Yu, Jia Xin ;
Lin, Yunqing .
NATURE REVIEWS DRUG DISCOVERY, 2018, 17 (12) :854-854
[6]   Trispecific natural killer cell nanoengagers for targeted chemoimmunotherapy [J].
Au, Kin Man ;
Park, Steven, I ;
Wang, Andrew Z. .
SCIENCE ADVANCES, 2020, 6 (27)
[7]   Intravenous nanoparticle vaccination generates stem-like TCF1+ neoantigen-specific CD8+ T cells [J].
Baharom, Faezzah ;
Ramirez-Valdez, Ramiro A. ;
Tobin, Kennedy K. S. ;
Yamane, Hidehiro ;
Dutertre, Charles-Antoine ;
Khalilnezhad, Ahad ;
Reynoso, Glennys, V ;
Coble, Vincent L. ;
Lynn, Geoffrey M. ;
Mule, Matthew P. ;
Martins, Andrew J. ;
Finnigan, John P. ;
Zhang, Xiao Meng ;
Hamerman, Jessica A. ;
Bhardwaj, Nina ;
Tsang, John S. ;
Hickman, Heather D. ;
Ginhoux, Florent ;
Ishizuka, Andrew S. ;
Seder, Robert A. .
NATURE IMMUNOLOGY, 2021, 22 (01) :41-52
[8]   In situ analysis of nanoparticle soft corona and dynamic evolution [J].
Baimanov, Didar ;
Wang, Jing ;
Zhang, Jun ;
Liu, Ke ;
Cong, Yalin ;
Shi, Xiaomeng ;
Zhang, Xiaohui ;
Li, Yufeng ;
Li, Xiumin ;
Qiao, Rongrong ;
Zhao, Yuliang ;
Zhou, Yunlong ;
Wang, Liming ;
Chen, Chunying .
NATURE COMMUNICATIONS, 2022, 13 (01)
[9]   Formation of the Protein Corona: The Interface between Nanoparticles and the Immune System [J].
Barbero, Francesco ;
Russo, Lorenzo ;
Vitali, Michele ;
Piella, Jordi ;
Salvo, Ignacio ;
Borrajo, Mireya L. ;
Busquets-Fite, Marti ;
Grandori, Rita ;
Bastus, Neus G. ;
Casals, Eudald ;
Puntes, Victor .
SEMINARS IN IMMUNOLOGY, 2017, 34 (0C) :52-60
[10]   The clinical progress of mRNA vaccines and immunotherapies [J].
Barbier, Ann J. ;
Jiang, Allen Yujie ;
Zhang, Peng ;
Wooster, Richard ;
Anderson, Daniel G. .
NATURE BIOTECHNOLOGY, 2022, 40 (06) :840-854