Rogue waves in the multicomponent Mel'nikov system and multicomponent Schrodinger-Boussinesq system

被引:15
作者
Sun, Baonan [1 ,2 ,3 ]
Lian, Zhan [2 ,3 ]
机构
[1] Ocean Univ China, Coll Ocean & Atmospher Sci, Qingdao 266100, Peoples R China
[2] Qingdao Natl Lab Marine Sci & Technol, Lab Reg Oceanog & Numer Modeling, Qingdao 266000, Peoples R China
[3] State Ocean Adm, Inst Oceanog 1, Key Lab Marine Sci & Numer Modeling, Qingdao 266061, Peoples R China
来源
PRAMANA-JOURNAL OF PHYSICS | 2018年 / 90卷 / 02期
基金
中国国家自然科学基金;
关键词
Multicomponent Mel'nikov system; multicomponent Schrodinger-Boussinesq system; rogue waves; bilinear transformation method; MODULATION INSTABILITY; RATIONAL SOLUTIONS; SOLITON-SOLUTIONS; EQUATION; DYNAMICS; LANGMUIR;
D O I
10.1007/s12043-017-1512-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By virtue of the bilinear method and the KP hierarchy reduction technique, exact explicit rational solutions of the multicomponent Mel'nikov equation and the multicomponent Schrodinger-Boussinesq equation are constructed, which contain multicomponent short waves and single-component long wave. For the multicomponent Mel'nikov equation, the fundamental rational solutions possess two different behaviours: lump and rogue wave. It is shown that the fundamental (simplest) rogue waves are line localised waves which arise from the constant background with a line profile and then disappear into the constant background again. The fundamental line rogue waves can be classified into three: bright, intermediate and dark line rogue waves. Two subclasses of non-fundamental rogue waves, i.e., multirogue waves and higher-order rogue waves are discussed. The multirogue waves describe interaction of several fundamental line rogue waves, in which interesting wave patterns appear in the intermediate time. Higher-order rogue waves exhibit dynamic behaviours that the wave structures start from lump and then retreat back to it. Moreover, by taking the parameter constraints further, general higher-order rogue wave solutions for the multicomponent Schrodinger-Boussinesq system are generated.
引用
收藏
页数:14
相关论文
共 73 条
[1]  
Agrawal G., 2012, Nonlinear Fiber Optics
[2]   How to excite a rogue wave [J].
Akhmediev, N. ;
Soto-Crespo, J. M. ;
Ankiewicz, A. .
PHYSICAL REVIEW A, 2009, 80 (04)
[3]   Waves that appear from nowhere and disappear without a trace [J].
Akhmediev, N. ;
Ankiewicz, A. ;
Taki, M. .
PHYSICS LETTERS A, 2009, 373 (06) :675-678
[4]   MODULATION INSTABILITY AND PERIODIC-SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
AKHMEDIEV, NN ;
KORNEEV, VI .
THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 69 (02) :1089-1093
[5]  
Ankiewicz A, 2017, ROM REP PHYS, V69
[6]  
[Anonymous], 2003, Optical Solitons
[7]   Observation of Peregrine Solitons in a Multicomponent Plasma with Negative Ions [J].
Bailung, H. ;
Sharma, S. K. ;
Nakamura, Y. .
PHYSICAL REVIEW LETTERS, 2011, 107 (25)
[8]   Optical Kerr Spatiotemporal Dark-Lump Dynamics of Hydrodynamic Origin [J].
Baronio, Fabio ;
Wabnitz, Stefan ;
Kodama, Yuji .
PHYSICAL REVIEW LETTERS, 2016, 116 (17)
[9]   Solutions of the Vector Nonlinear Schrodinger Equations: Evidence for Deterministic Rogue Waves [J].
Baronio, Fabio ;
Degasperis, Antonio ;
Conforti, Matteo ;
Wabnitz, Stefan .
PHYSICAL REVIEW LETTERS, 2012, 109 (04)
[10]   Vector rogue waves in binary mixtures of Bose-Einstein condensates [J].
Bludov, Yu. V. ;
Konotop, V. V. ;
Akhmediev, N. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2010, 185 (01) :169-180