Surreal numbers in Coq

被引:0
作者
Mamane, LE [1 ]
机构
[1] Radboud Univ Nijmegen, Inst Comp & Informat Sci, Nijmegen, Netherlands
来源
TYPES FOR PROOFS AND PROGRAMS | 2006年 / 3839卷
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Surreal Numbers form a totally ordered (commutative) Field, containing copies of the reals and (all) the ordinals. I have encoded most of the Ring structure of surreal numbers in Coq. This encoding relies on Aczel's encoding of set theory in type theory. This paper discusses in particular the definitional or proving points where I had to diverge from Conway's or the most natural way, like separation of simultaneous induction-recursion into two inductions, transforming the definition of the order into a mutually inductive definition of "at most" and "at least" and fitting the rather complicated induction/recursion schemes into the type theory of Coq.
引用
收藏
页码:170 / 185
页数:16
相关论文
共 21 条
  • [1] ACZEL P, 1982, LEJ BROUW CENT S N H
  • [2] ACZEL P, 1985, P METH PHIL SCI
  • [3] ACZEL P, 1977, LOGIC C, V77
  • [4] [Anonymous], SURREAL NUMBERS INTR
  • [5] [Anonymous], TEXTS THEORETICAL CO
  • [6] BOVE A, 2005, UNPUB MATH STRUCTURE
  • [7] BOVE A, 2002, THESIS CHALMERS U TE
  • [8] BOVE A, 2001, LECT NOTES COMPUTER, V2152, P121
  • [9] Capretta V, 2000, LECT NOTES COMPUT SC, V1869, P73
  • [10] Conway J.H., 2000, On Numbers and Games