Flexible n-Type Tungsten Carbide/Polylactic Acid Thermoelectric Composites Fabricated by Additive Manufacturing

被引:32
作者
Du, Yong [1 ,2 ]
Chen, Jiageng [1 ]
Liu, Xin [1 ]
Lu, Chun [3 ]
Xu, Jiayue [1 ]
Paul, Biplab [2 ]
Eklund, Per [2 ]
机构
[1] Shanghai Inst Technol, Sch Mat Sci & Engn, Shanghai 201418, Peoples R China
[2] Linkoping Univ, Dept Phys Chem & Biol IFM, Thin Film Phys Div, SE-58183 Linkoping, Sweden
[3] Shenyang Aerosp Univ, Coll Aerosp Engn, Shenyang 110136, Liaoning, Peoples R China
基金
欧洲研究理事会; 中国国家自然科学基金; 瑞典研究理事会;
关键词
flexible thermoelectrics; additive manufacturing; tungsten carbide; polylactic acid; composites; ULTRALOW THERMAL-CONDUCTIVITY; POLYMERS; FILMS; NANOCOMPOSITES; PERFORMANCE; HYBRIDS; FIGURE; MERIT;
D O I
10.3390/coatings8010025
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Flexible n-type tungsten carbide/polylactic acid (WC/PLA) composites were fabricated by additive manufacturing and their thermoelectric properties were investigated. The preparation of an n-type polymer-based thermoelectric composite with good stability in air atmosphere via additive manufacturing holds promise for application in flexible thermoelectric devices. For WC/PLA volume ratios varying from similar to 33% to 60%, the electrical conductivity of the composites increased from 10.6 to 42.2 S/cm, while the Seebeck coefficients were in the range -11 to -12.3 V/K. The thermal conductivities of the composites varied from similar to 0.2 to similar to 0.28 Wm(-1)K(-1) at similar to 300 K.
引用
收藏
页数:7
相关论文
共 37 条
[1]   High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix [J].
Abyzov, Andrey M. ;
Kidalov, Sergey V. ;
Shakhov, Fedor M. .
JOURNAL OF MATERIALS SCIENCE, 2011, 46 (05) :1424-1438
[2]   Flexible thermoelectric materials and device optimization for wearable energy harvesting [J].
Bahk, Je-Hyeong ;
Fang, Haiyu ;
Yazawa, Kazuaki ;
Shakouri, Ali .
JOURNAL OF MATERIALS CHEMISTRY C, 2015, 3 (40) :10362-10374
[3]   An overview of additive manufacturing (3D printing) for microfabrication [J].
Bhushan, Bharat ;
Caspers, Matt .
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2017, 23 (04) :1117-1124
[4]  
Bubnova O, 2014, NAT MATER, V13, P190, DOI [10.1038/nmat3824, 10.1038/NMAT3824]
[5]   RETRACTED: Towards polymer-based organic thermoelectric generators (Retracted Article) [J].
Bubnova, Olga ;
Crispin, Xavier .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (11) :9345-9362
[6]  
Bubnova O, 2011, NAT MATER, V10, P429, DOI [10.1038/nmat3012, 10.1038/NMAT3012]
[7]   Bendable n-Type Metallic Nanocomposites with Large Thermoelectric Power Factor [J].
Chen, Yani ;
He, Minhong ;
Liu, Bin ;
Bazan, Guillermo C. ;
Zhou, Jun ;
Liang, Ziqi .
ADVANCED MATERIALS, 2017, 29 (04)
[8]   Preparation and characterization of graphene nanosheets/poly(3-hexylthiophene) thermoelectric composite materials [J].
Du, Y. ;
Cai, K. F. ;
Shen, S. Z. ;
Casey, P. S. .
SYNTHETIC METALS, 2012, 162 (23) :2102-2106
[9]   Facile Preparation and Thermoelectric Properties of Bi2Te3 Based Alloy Nanosheet/PEDOT:PSS Composite Films [J].
Du, Yong ;
Cai, K. F. ;
Chen, Song ;
Cizek, Pavel ;
Lin, Tong .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (08) :5735-5743
[10]   Research progress on polymer-inorganic thermoelectric nanocomposite materials [J].
Du, Yong ;
Shen, Shirley Z. ;
Cai, Kefeng ;
Casey, Philip S. .
PROGRESS IN POLYMER SCIENCE, 2012, 37 (06) :820-841