A control condition for a weak Harnack inequality

被引:5
作者
Kogoj, Alessia E. [1 ]
机构
[1] Univ Bologna, Dipartimento Matemat, IT-40126 Bologna, Italy
关键词
Harnack inequality; X-elliptic operators; Liouville theorems; X-ELLIPTIC OPERATORS; VECTOR-FIELDS; POINCARE INEQUALITY; THEOREMS; SPACES;
D O I
10.1016/j.na.2012.03.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new condition allowing to get a weak Harnack inequality for non-negative solutions to linear second order degenerate elliptic equations of X-elliptic type. Roughly speaking, our condition requires that the Euclidean balls of small radius are representable by means of X-controllable almost exponential maps. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4198 / 4204
页数:7
相关论文
共 15 条
[1]  
Adams R.A., 1975, Sobolev Spaces. Adams. Pure and applied mathematics
[2]   Covering theorems, inequalities on metric spaces and applications to PDE's [J].
Di Fazio, Giuseppe ;
Gutierrez, Cristian E. ;
Lanconelli, Ermanno .
MATHEMATISCHE ANNALEN, 2008, 341 (02) :255-291
[3]  
FRANCHI B, 1985, J MATH PURE APPL, V64, P237
[4]   AN EMBEDDING THEOREM FOR SOBOLEV SPACES RELATED TO NON-SMOOTH VECTOR-FIELDS AND HARNACK INEQUALITY [J].
FRANCHI, B ;
LANCONELLI, E .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1984, 9 (13) :1237-1264
[5]  
Franchi B., 1984, C LIN PART PSEUD OP, P105
[6]  
Franchi B., 1983, Ann. Sc. Norm. Super. Pisa, V4, P523
[7]  
Franchi Bruno, 1996, INT MATH RES NOTICES, V1, P1, DOI 10.1155/S1073792896000013
[8]  
Garofalo N., 1996, COMMUN PUR APPL MATH, V10, P1153
[9]   Maximum principle, nonhomogeneous Harnack inequality, and Lionville theorems for X-elliptic operators [J].
Gutiérrez, CE ;
Lanconelli, E .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (11-12) :1833-1862
[10]   THE POINCARE INEQUALITY FOR VECTOR-FIELDS SATISFYING HORMANDER CONDITION [J].
JERISON, D .
DUKE MATHEMATICAL JOURNAL, 1986, 53 (02) :503-523