Existence of solutions for some fourth-order boundary value problems with parameters

被引:28
作者
Yang, Yang [1 ,2 ]
Zhang, Jihui [1 ]
机构
[1] Nanjing Normal Univ, Sch Math & Comp Sci, Inst Math, Nanjing, Peoples R China
[2] Jiangnan Univ, Sch Sci, Wuxi, Peoples R China
基金
高等学校博士学科点专项科研基金;
关键词
boundary value problem; homological nontrivial critical point; Morse theory; local linking;
D O I
10.1016/j.na.2007.06.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, existence and multiplicity results for solutions are obtained for the fourth-order boundary value problem (BVP) u((4))(t) + eta u ''(t) - xi u(t) = lambda f(t, u(t)), 0 < t < 1, u(0) =u(1) =u ''(0) = u ''(1) =0, where f : [0, 1] x R -> R is continuous, xi, eta is an element of R and lambda is an element of R+ are parameters. By using the critical point theory and Morse theory, we obtain that if xi, eta satisfy xi/pi(4), eta/pi(2) < 1, then the above BVP has solutions where. is in some different intervals. (c) 206 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1364 / 1375
页数:12
相关论文
共 8 条
[1]   Critical point theory for asymptotically quadratic functionals and applications to problems with resonance [J].
Bartsch, T ;
Li, SJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (03) :419-441
[2]   Existence of solutions to nonlinear Hammerstein integral equations and applications [J].
Li, Fuyi ;
Li, Yuhua ;
Liang, Zhanping .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (01) :209-227
[3]   Existence and multiplicity of solutions of a kind of fourth-order boundary value problem [J].
Li, FY ;
Zhang, Q ;
Liang, ZP .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 62 (05) :803-816
[4]   Remarks on multiple nontrivial solutions for quasi-linear resonant problems [J].
Liu, J ;
Su, JB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 258 (01) :209-222
[5]   Existence and multiplicity of solutions for fourth-order boundary value problems with parameters [J].
Liu, Xi-Lan ;
Li, Wan-Tong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (01) :362-375
[6]  
Taylor A.E., 1980, INTRO FUNCTIONAL ANA
[7]   Multiple nontrivial solutions for some fourth-order semilinear elliptic problems [J].
Zhang, JH ;
Li, SJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (02) :221-230
[8]  
刘嘉荃, 1989, Systems Science and Mathematical Science, V2, P32