Spectral and phase space analysis of the linearized non-cutoff Kac collision operator

被引:19
作者
Lerner, N. [1 ]
Morimoto, Y. [2 ]
Pravda-Starov, K. [3 ]
Xu, C. -J. [4 ,5 ]
机构
[1] Univ Paris 06, Inst Math Jussieu, F-75252 Paris 05, France
[2] Kyoto Univ, Grad Sch Human & Environm Studies, Kyoto 6068501, Japan
[3] Univ Cergy Pontoise, CNRS, Dept Math, UMR 8088, F-95000 Cergy Pontoise, France
[4] Wuhan Univ, Sch Math, Wuhan 430072, Peoples R China
[5] Univ Rouen, CNRS, Dept Math, UMR 6085, F-76801 St Etienne, France
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2013年 / 100卷 / 06期
基金
美国国家科学基金会; 日本学术振兴会;
关键词
Non-cutoff Kac equation; Non-cutoff Boltzmann equation; Spectral analysis; Microlocal analysis; BOLTZMANN-EQUATION; ANGULAR CUTOFF; KINETIC-EQUATIONS;
D O I
10.1016/j.matpur.2013.03.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The non-cutoff Kac operator is a kinetic model for the non-cutoff radially symmetric Boltzmann operator. For Maxwellian molecules, the linearization of the non-cutoff Kac operator around a Maxwellian distribution is shown to be a function of the harmonic oscillator, to be diagonal in the Hermite basis and to be essentially a fractional power of the harmonic oscillator. This linearized operator is a pseudodifferential operator, and we provide a complete asymptotic expansion for its symbol in a class enjoying a nice symbolic calculus. Related results for the linearized non-cutoff radially symmetric Boltzmann operator are also proven. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:832 / 867
页数:36
相关论文
共 27 条
[11]   Sharp anisotropic estimates for the Boltzmann collision operator and its entropy production [J].
Gressman, Philip T. ;
Strain, Robert M. .
ADVANCES IN MATHEMATICS, 2011, 227 (06) :2349-2384
[12]   GLOBAL CLASSICAL SOLUTIONS OF THE BOLTZMANN EQUATION WITHOUT ANGULAR CUT-OFF [J].
Gressman, Philip T. ;
Strain, Robert M. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (03) :771-847
[13]  
Helffer B., 2005, LECT NOTES MATH, V1862
[14]   SYMPLECTIC CLASSIFICATION OF QUADRATIC-FORMS, AND GENERAL MEHLER FORMULAS [J].
HORMANDER, L .
MATHEMATISCHE ZEITSCHRIFT, 1995, 219 (03) :413-449
[15]  
KLAUS M, 1977, HELV PHYS ACTA, V50, P893
[16]  
Lerner N., 2010, METRICS PHASE SPACE
[17]   Hypoelliptic Estimates for a Linear Model of the Boltzmann Equation Without Angular Cutoff [J].
Lerner, Nicolas ;
Morimoto, Yoshinori ;
Pravda-Starov, Karel .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (02) :234-284
[18]   Hypoellipticity for a class of kinetic equations [J].
Morimoto, Yoshinori ;
Xu, Chao-Jiang .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2007, 47 (01) :129-152
[19]   Ultra-analytic effect of Cauchy problem for a class of kinetic equations [J].
Morimoto, Yoshinori ;
Xu, Chao-Jiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (02) :596-617
[20]   Spectral gap and coercivity estimates for linearized Boltzmann collision operators without angular cutoff [J].
Mouhot, Clement ;
Strain, Robert M. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 87 (05) :515-535