Spectral and phase space analysis of the linearized non-cutoff Kac collision operator

被引:19
作者
Lerner, N. [1 ]
Morimoto, Y. [2 ]
Pravda-Starov, K. [3 ]
Xu, C. -J. [4 ,5 ]
机构
[1] Univ Paris 06, Inst Math Jussieu, F-75252 Paris 05, France
[2] Kyoto Univ, Grad Sch Human & Environm Studies, Kyoto 6068501, Japan
[3] Univ Cergy Pontoise, CNRS, Dept Math, UMR 8088, F-95000 Cergy Pontoise, France
[4] Wuhan Univ, Sch Math, Wuhan 430072, Peoples R China
[5] Univ Rouen, CNRS, Dept Math, UMR 6085, F-76801 St Etienne, France
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2013年 / 100卷 / 06期
基金
美国国家科学基金会; 日本学术振兴会;
关键词
Non-cutoff Kac equation; Non-cutoff Boltzmann equation; Spectral analysis; Microlocal analysis; BOLTZMANN-EQUATION; ANGULAR CUTOFF; KINETIC-EQUATIONS;
D O I
10.1016/j.matpur.2013.03.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The non-cutoff Kac operator is a kinetic model for the non-cutoff radially symmetric Boltzmann operator. For Maxwellian molecules, the linearization of the non-cutoff Kac operator around a Maxwellian distribution is shown to be a function of the harmonic oscillator, to be diagonal in the Hermite basis and to be essentially a fractional power of the harmonic oscillator. This linearized operator is a pseudodifferential operator, and we provide a complete asymptotic expansion for its symbol in a class enjoying a nice symbolic calculus. Related results for the linearized non-cutoff radially symmetric Boltzmann operator are also proven. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:832 / 867
页数:36
相关论文
共 27 条
[1]   Entropy dissipation and long-range interactions [J].
Alexandre, R ;
Desvillettes, L ;
Villani, C ;
Wennberg, B .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 152 (04) :327-355
[2]   The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential [J].
Alexandre, R. ;
Morimoto, Y. ;
Ukai, S. ;
Xu, C. -J. ;
Yang, T. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (03) :915-1010
[3]   Global Existence and Full Regularity of the Boltzmann Equation Without Angular Cutoff [J].
Alexandre, R. ;
Morimoto, Y. ;
Ukai, S. ;
Xu, C. -J. ;
Yang, T. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 304 (02) :513-581
[4]   Regularizing Effect and Local Existence for the Non-Cutoff Boltzmann Equation [J].
Alexandre, Radjesvarane ;
Morimoto, Yoshinori ;
Ukai, Seiji ;
Xu, Chao-Jiang ;
Yang, Tong .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 198 (01) :39-123
[5]  
Bobylev A.V, 1988, MATH PHYS REV, V7, P111
[6]  
Cercignani C., 1988, BOLTZMANN EQUATION I
[7]  
Cercignani C., 1969, Mathematical Methods in Kinetic Theory
[8]   ABOUT THE REGULARIZING PROPERTIES OF THE NON-CUT-OFF KAC EQUATION [J].
DESVILLETTES, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 168 (02) :417-440
[9]   CELEBRATING CERCIGNANI'S CONJECTURE FOR THE BOLTZMANN EQUATION [J].
Desvillettes, Laurent ;
Mouhot, Clement ;
Villani, Cedric .
KINETIC AND RELATED MODELS, 2011, 4 (01) :277-294
[10]  
Dolera E., 2011, B UNIONE MAT ITAL, V4, P47