Dynamic and Steady States for Multi-Dimensional Keller-Segel Model with Diffusion Exponent m > 0

被引:66
作者
Bian, Shen [1 ,2 ,3 ]
Liu, Jian-Guo [2 ,3 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[2] Duke Univ, Dept Phys, Durham, NC 27708 USA
[3] Duke Univ, Dept Math, Durham, NC 27708 USA
关键词
HARDY-LITTLEWOOD-SOBOLEV; AGGREGATION EQUATIONS; POSITIVE SOLUTIONS; GLOBAL EXISTENCE; BLOW-UP; TIME AGGREGATION; LOCAL BEHAVIOR; SYMMETRY; ASYMPTOTICS;
D O I
10.1007/s00220-013-1777-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper investigates infinite-time spreading and finite-time blow-up for the Keller-Segel system. For 0 < m a parts per thousand currency sign 2 - 2 / d, the L (p) space for both dynamic and steady solutions are detected with . Firstly, the global existence of the weak solution is proved for small initial data in L (p) . Moreover, when m > 1 - 2 / d, the weak solution preserves mass and satisfies the hyper-contractive estimates in L (q) for any p < q < a. Furthermore, for slow diffusion 1 < m a parts per thousand currency sign 2 - 2/d, this weak solution is also a weak entropy solution which blows up at finite time provided by the initial negative free energy. For m > 2 - 2/d, the hyper-contractive estimates are also obtained. Finally, we focus on the L (p) norm of the steady solutions, it is shown that the energy critical exponent m = 2d/(d + 2) is the critical exponent separating finite L (p) norm and infinite L (p) norm for the steady state solutions.
引用
收藏
页码:1017 / 1070
页数:54
相关论文
共 49 条
[1]  
Alikakos Nicholas D., 1979, Comm. Partial Differential Equations, V4, P827, DOI DOI 10.1080/03605307908820113
[2]  
[Anonymous], 2002, Advances in Partial Di erential Equations
[3]  
Bedrossian J, 2011, COMMUN MATH SCI, V9, P1143
[4]   Global minimizers for free energies of subcritical aggregation equations with degenerate diffusion [J].
Bedrossian, Jacob .
APPLIED MATHEMATICS LETTERS, 2011, 24 (11) :1927-1932
[5]   Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion [J].
Bedrossian, Jacob ;
Rodriguez, Nancy ;
Bertozzi, Andrea L. .
NONLINEARITY, 2011, 24 (06) :1683-1714
[6]   NUMBER OF SOLUTIONS OF CERTAIN SEMI-LINEAR ELLIPTIC PROBLEMS [J].
BERESTYCKI, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1981, 40 (01) :1-29
[7]  
Blanchet A., 2006, Electron. Differential Equations, V2006, P1
[8]  
Blanchet A, 2008, COMMUN PUR APPL MATH, V61, P1449, DOI 10.1002/cpa.20225
[9]   Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions [J].
Blanchet, Adrien ;
Carrillo, Jose A. ;
Laurencot, Philippe .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 35 (02) :133-168
[10]   Asymptotics of the Fast Diffusion Equation via Entropy Estimates [J].
Blanchet, Adrien ;
Bonforte, Matteo ;
Dolbeault, Jean ;
Grillo, Gabriele ;
Vazquez, Juan Luis .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2009, 191 (02) :347-385