Subsurface fluorescence molecular tomography with prior information

被引:5
作者
He, Wei [1 ]
Pu, Huangsheng [1 ]
Zhang, Guanglei [1 ]
Cao, Xu [1 ]
Zhang, Bin [1 ]
Liu, Fei [1 ]
Luo, Jianwen [1 ,2 ]
Bai, Jing [1 ]
机构
[1] Tsinghua Univ, Sch Med, Dept Biomed Engn, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Ctr Biomed Imaging Res, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
DIFFUSE OPTICAL TOMOGRAPHY; IN-VIVO; TISSUE; RECONSTRUCTION; REGULARIZATION; TRANSPORT; SYSTEM;
D O I
10.1364/AO.53.000402
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Subsurface fluorescence molecular tomography (FMT) is an emerging technique determining fluorescence distribution by tomographic means in reflectance geometry. However, due to the highly diffusive nature of the photon propagation in biological tissues and the influence of nearer source-detector separations, stand-alone subsurface FMT could not accurately reflect the fluorophore distributions. To overcome this drawback, we propose a method to improve the performance of fluorescence imaging by coupling x-ray computed tomography (XCT) and subsurface FMT modalities. A Laplacian-type regularization matrix generated with tissue prior information obtained from XCT images is used to guide the reconstruction of fluorophore distribution. Reconstruction results of both simulation and phantom studies showed that significant improvements in localization and demarcation of fluorescent targets can be obtained with the proposed method compared to the reconstruction method without structural prior information. (C) 2014 Optical Society of America
引用
收藏
页码:402 / 409
页数:8
相关论文
共 29 条
[1]   High accuracy of mesoscopic epi-fluorescence tomography for non-invasive quantitative volume determination of fluorescent protein-expressing tumours in mice [J].
Abou-Elkacem, Lotfi ;
Bjoern, Saskia ;
Doleschel, Dennis ;
Ntziachristos, Vasilis ;
Schulz, Ralf ;
Hoffman, Robert M. ;
Kiessling, Fabian ;
Lederle, Wiltrud .
EUROPEAN RADIOLOGY, 2012, 22 (09) :1955-1962
[2]  
Ale A, 2012, NAT METHODS, V9, P615, DOI [10.1038/nmeth.2014, 10.1038/NMETH.2014]
[3]   Optical tomography in medical imaging [J].
Arridge, SR .
INVERSE PROBLEMS, 1999, 15 (02) :R41-R93
[4]   A comparison between transport and diffusion calculations using a finite element-spherical harmonics radiation transport method [J].
Aydin, ED ;
de Oliveira, CRE ;
Goddard, AJH .
MEDICAL PHYSICS, 2002, 29 (09) :2013-2023
[5]   Sparsity-Driven Reconstruction for FDOT With Anatomical Priors [J].
Baritaux, Jean-Charles ;
Hassler, Kai ;
Bucher, Martina ;
Sanyal, Sebanti ;
Unser, Michael .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (05) :1143-1153
[6]   Reconstruction of fluorescence distribution hidden in biological tissue using mesoscopic epifluorescence tomography [J].
Bjoern, Saskia ;
Englmeier, Karl-Hans ;
Ntziachristos, Vasilis ;
Schulz, Ralf .
JOURNAL OF BIOMEDICAL OPTICS, 2011, 16 (04)
[7]   Combining near-infrared tomography resonance imaging to study in vivo and magnetic breast tissue:: implementation of a Laplacian-type regularization to incorporate magnetic resonance structure -: art. no. 051504 [J].
Brooksby, B ;
Jiang, SD ;
Dehghani, H ;
Pogue, BW ;
Paulsen, KD ;
Weaver, J ;
Kogel, C ;
Poplack, SP .
JOURNAL OF BIOMEDICAL OPTICS, 2005, 10 (05)
[8]   Reconstruction for limited-projection fluorescence molecular tomography based on projected restarted conjugate gradient normal residual [J].
Cao, Xu ;
Zhang, Bin ;
Liu, Fei ;
Wang, Xin ;
Bai, Jing .
OPTICS LETTERS, 2011, 36 (23) :4515-4517
[9]   Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization [J].
Davis, Scott C. ;
Dehghani, Hamid ;
Wang, Jia ;
Jiang, Shudong ;
Pogue, Brian W. ;
Paulsen, Keith D. .
OPTICS EXPRESS, 2007, 15 (07) :4066-4082
[10]   A DIFFUSION-THEORY MODEL OF SPATIALLY RESOLVED, STEADY-STATE DIFFUSE REFLECTANCE FOR THE NONINVASIVE DETERMINATION OF TISSUE OPTICAL-PROPERTIES INVIVO [J].
FARRELL, TJ ;
PATTERSON, MS ;
WILSON, B .
MEDICAL PHYSICS, 1992, 19 (04) :879-888