Fuzzy Descriptor Sliding Mode Observer Design: A Canonical Form-Based Method

被引:47
作者
Li, Jinghao [1 ,2 ]
Yang, Guang-Hong [1 ,2 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Peoples R China
[2] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
Observers; Switches; Design methodology; Fuzzy systems; Linear matrix inequalities; Nonlinear systems; Sliding mode control; Integral-type switching function; linear switching function; sliding mode observer; T-S fuzzy descriptor systems; LYAPUNOV FUNCTION-APPROACH; FAULT-TOLERANT CONTROL; CONTROLLER-DESIGN; SYSTEMS; STABILIZATION; RECONSTRUCTION; STABILITY; VEHICLE;
D O I
10.1109/TFUZZ.2019.2930036
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Linear switching function and integral-type switching function are two typical switching functions in the sliding mode control field. Based on these, this paper investigates the design problem of fuzzy descriptor sliding mode observers. Two canonical forms, which are the T-S fuzzy descriptor systems' counterparts of the canonical form in normal systems, are first proposed. In terms of the proposed canonical forms, a linear switching function-based fuzzy descriptor sliding mode observer and an integral-type switching function-based fuzzy descriptor sliding mode observer are designed, respectively. It is shown that although the linear switching function-based fuzzy descriptor sliding mode observer has a much simpler design structure than the integral-type switching function-based fuzzy descriptor sliding mode observer, the integral-type switching function-based design method can deal with a much larger range of T-S fuzzy descriptor systems than the linear switching function-based design method. Finally, three simulation examples are provided to verify the effectiveness and merits of the proposed method.
引用
收藏
页码:2048 / 2062
页数:15
相关论文
共 58 条
[1]   Singular linear parameter-varying observer for composition estimation in a binary distillation column [J].
Aguilera-Gonzalez, Adriana ;
Astorga-Zaragoza, Carlos-Manuel ;
Adam-Medina, Manuel ;
Theilliol, Didier ;
Reyes-Reyes, Juan ;
Garcia-Beltran, Carlos-Daniel .
IET CONTROL THEORY AND APPLICATIONS, 2013, 7 (03) :411-422
[2]   Observers for Takagi-Sugeno fuzzy systems [J].
Bergsten, P ;
Palm, R ;
Driankov, D .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2002, 32 (01) :114-121
[3]   Integral sliding-mode control for linear time-invariant implicit systems [J].
Castanos, Fernando ;
Hernandez, Debbie ;
Fridman, Leonid M. .
AUTOMATICA, 2014, 50 (03) :971-975
[4]  
Castaños F, 2012, IEEE DECIS CONTR P, P6442, DOI 10.1109/CDC.2012.6426378
[5]   LMI-based nonlinear fuzzy observer-controller design for uncertain MIMO nonlinear systems [J].
Choi, Han Ho .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2007, 15 (05) :956-971
[6]   Stability Analysis of T-S Fuzzy Control Systems by Using Set Theory [J].
Dong, Jiuxiang ;
Yang, Guang-Hong ;
Zhang, Huaguang .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2015, 23 (04) :827-841
[7]   Reliable State Feedback Control of T-S Fuzzy Systems With Sensor Faults [J].
Dong, Jiuxiang ;
Yang, Guang-Hong .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2015, 23 (02) :421-433
[8]  
Duan GR, 2010, ADV MECH MATH, V23, P1, DOI 10.1007/978-1-4419-6397-0_1
[9]  
Edwards C., 1998, Sliding Mode Control, DOI 10.1201/9781498701822
[10]   Controller Design for Discrete-Time Descriptor Models: A Systematic LMI Approach [J].
Estrada-Manzo, Victor ;
Lendek, Zsofia ;
Guerra, Thierry Marie ;
Pudlo, Philippe .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2015, 23 (05) :1608-1621