An improvement to Darboux integrability theorem for systems having a center

被引:7
作者
Chavarriga, J
Giacomini, H
Giné, J
机构
[1] Univ Lleida, Dept Matemat, Lleida 25001, Spain
[2] Univ Tours, Fac Sci & Tech, Lab Math & Phys Theor, F-37200 Tours, France
关键词
nonlinear differential equations; integrability; center problem;
D O I
10.1016/S0893-9659(99)00127-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider planar polynomial differential systems of degree m with a center at the origin and with an arbitrary linear part. We show that if the system has m(m + 1)/2 - [(m + 1)/2] algebraic solutions or exponential factors then it has a Darboux integrating factor. This result is an improvement of the classical Darboux integrability theorem and other recent results about integrability. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:85 / 89
页数:5
相关论文
共 14 条
[1]  
CAIRO L, UNPUB P ROYAL LONDON
[2]  
CHAVARRIGA J, 1997, EXPO MATH, V15, P161
[3]   INVARIANT ALGEBRAIC-CURVES AND CONDITIONS FOR A CENTER [J].
CHRISTOPHER, CJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 :1209-1229
[4]  
Cozma D, 1995, NODEA-NONLINEAR DIFF, V2, P21
[5]  
Darboux G., 1878, B SCI MATH, V2, P60
[6]  
DARBOUX G, 1878, B SCI MATH ASTRON, V2, P123
[7]  
Darboux G., 1878, B SCI MATH, V2, P151
[8]  
GASULL A, 1993, EQ 91 INT C DIFF EQ, V2, P531
[9]  
Hilbert D., 1900, Nachrichten Ges. Wiss. Gott, V1900, P253
[10]  
Jouanolou J.P., 1979, LECT NOTES MATH, V708